A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density
Electrical characteristics of three-dimensional Zinc Oxide nanowire field effect transistor has been studied using 3-D TCAD tool. The device exhibited a good output performance that clearly shows linear and saturation mode with threshold voltage of 0.75V, field-effect mobility of ∼108 cm2/v.s and on...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/73328/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84966692459&doi=10.1109%2fSCORED.2015.7449373&partnerID=40&md5=b839906c1190633bfe1a7ca8882eb1a8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.73328 |
---|---|
record_format |
eprints |
spelling |
my.utm.733282017-11-20T08:42:59Z http://eprints.utm.my/id/eprint/73328/ A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density Khoo, W. H. Sultan, S. M. TK Electrical engineering. Electronics Nuclear engineering Electrical characteristics of three-dimensional Zinc Oxide nanowire field effect transistor has been studied using 3-D TCAD tool. The device exhibited a good output performance that clearly shows linear and saturation mode with threshold voltage of 0.75V, field-effect mobility of ∼108 cm2/v.s and on/off current ratio of ∼109. This device is then introduced with defect and interface charge density separately, which results on reduction of the field-effect mobility and an increase of the threshold voltage. This study is useful to determine possible factors causing poor performance of fabricated device and also can work as gas sensor device by putting trap or change the surface charge density. Institute of Electrical and Electronics Engineers Inc. 2016 Conference or Workshop Item PeerReviewed Khoo, W. H. and Sultan, S. M. (2016) A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density. In: IEEE Student Conference on Research and Development, SCOReD 2015, 13 - 14 Dec 2015, Kuala Lumpur, Malaysia. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84966692459&doi=10.1109%2fSCORED.2015.7449373&partnerID=40&md5=b839906c1190633bfe1a7ca8882eb1a8 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Khoo, W. H. Sultan, S. M. A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
description |
Electrical characteristics of three-dimensional Zinc Oxide nanowire field effect transistor has been studied using 3-D TCAD tool. The device exhibited a good output performance that clearly shows linear and saturation mode with threshold voltage of 0.75V, field-effect mobility of ∼108 cm2/v.s and on/off current ratio of ∼109. This device is then introduced with defect and interface charge density separately, which results on reduction of the field-effect mobility and an increase of the threshold voltage. This study is useful to determine possible factors causing poor performance of fabricated device and also can work as gas sensor device by putting trap or change the surface charge density. |
format |
Conference or Workshop Item |
author |
Khoo, W. H. Sultan, S. M. |
author_facet |
Khoo, W. H. Sultan, S. M. |
author_sort |
Khoo, W. H. |
title |
A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
title_short |
A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
title_full |
A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
title_fullStr |
A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
title_full_unstemmed |
A study of 3-D Zinc Oxide nanowire field effect transistor with defect and interface charge density |
title_sort |
study of 3-d zinc oxide nanowire field effect transistor with defect and interface charge density |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2016 |
url |
http://eprints.utm.my/id/eprint/73328/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84966692459&doi=10.1109%2fSCORED.2015.7449373&partnerID=40&md5=b839906c1190633bfe1a7ca8882eb1a8 |
_version_ |
1643656632424464384 |
score |
13.251813 |