A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection
This paper develops a hybrid approach integrating an adaptive artificial neural network (ANN) and a fuzzy logic system for tackling class-imbalance problems. In particular, a supervised learning ANN based on Adaptive Resonance Theory (ART) is combined with a Tagaki�Sugeno�Kang-based fuzzy infere...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Elsevier Inc.
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032186655&doi=10.1016%2fj.ins.2017.10.040&partnerID=40&md5=fefe70c2341a3f89d2d12059cf151c29 http://eprints.utp.edu.my/21815/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.21815 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.218152019-02-20T01:53:24Z A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection Tan, S.C. Wang, S. Watada, J. This paper develops a hybrid approach integrating an adaptive artificial neural network (ANN) and a fuzzy logic system for tackling class-imbalance problems. In particular, a supervised learning ANN based on Adaptive Resonance Theory (ART) is combined with a Tagaki�Sugeno�Kang-based fuzzy inference mechanism to learn and detect defects of a real large highly imbalanced dataset collected from a semiconductor company. A benchmark study is also conducted to compare the classification performance of the proposed method with other published methods in the literature. The real dataset collected from the semiconductor company intrinsically demonstrates class overlap and data shift in a highly imbalanced data environment. The generalization ability of the proposed method in detecting semiconductor defects is evaluated and compared with other existing methods, and the results are analyzed using statistical methods. The outcomes from the empirical studies positively indicate high potentials of the proposed approach in classifying the highly imbalanced dataset posing overlap class and data shift. © 2017 Elsevier Inc. 2018 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032186655&doi=10.1016%2fj.ins.2017.10.040&partnerID=40&md5=fefe70c2341a3f89d2d12059cf151c29 Tan, S.C. and Wang, S. and Watada, J. (2018) A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection. Information Sciences, 427 . pp. 1-17. http://eprints.utp.edu.my/21815/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
This paper develops a hybrid approach integrating an adaptive artificial neural network (ANN) and a fuzzy logic system for tackling class-imbalance problems. In particular, a supervised learning ANN based on Adaptive Resonance Theory (ART) is combined with a Tagaki�Sugeno�Kang-based fuzzy inference mechanism to learn and detect defects of a real large highly imbalanced dataset collected from a semiconductor company. A benchmark study is also conducted to compare the classification performance of the proposed method with other published methods in the literature. The real dataset collected from the semiconductor company intrinsically demonstrates class overlap and data shift in a highly imbalanced data environment. The generalization ability of the proposed method in detecting semiconductor defects is evaluated and compared with other existing methods, and the results are analyzed using statistical methods. The outcomes from the empirical studies positively indicate high potentials of the proposed approach in classifying the highly imbalanced dataset posing overlap class and data shift. © 2017 |
format |
Article |
author |
Tan, S.C. Wang, S. Watada, J. |
spellingShingle |
Tan, S.C. Wang, S. Watada, J. A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
author_facet |
Tan, S.C. Wang, S. Watada, J. |
author_sort |
Tan, S.C. |
title |
A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
title_short |
A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
title_full |
A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
title_fullStr |
A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
title_full_unstemmed |
A self-adaptive class-imbalance TSK neural network with applications to semiconductor defects detection |
title_sort |
self-adaptive class-imbalance tsk neural network with applications to semiconductor defects detection |
publisher |
Elsevier Inc. |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032186655&doi=10.1016%2fj.ins.2017.10.040&partnerID=40&md5=fefe70c2341a3f89d2d12059cf151c29 http://eprints.utp.edu.my/21815/ |
_version_ |
1738656342088876032 |
score |
13.214268 |