Feedforward model with cascading proportional derivative active force control for an articulated arm mobile manipulator
This thesis presents an approach for controlling a mobile manipulator (MM) using a two degree of freedom (DOF) controller which essentially comprises a cascading proportional-derivative (CPD) control and feedforward active force control (FAFC). MM possesses both features of mobile platform and indus...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/81675/1/SharimanAbdullahPFKM2016.pdf http://eprints.utm.my/id/eprint/81675/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:126339 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This thesis presents an approach for controlling a mobile manipulator (MM) using a two degree of freedom (DOF) controller which essentially comprises a cascading proportional-derivative (CPD) control and feedforward active force control (FAFC). MM possesses both features of mobile platform and industrial arm manipulator. This has greatly improved the performance of MM with increased workspace capacity and better operation dexterity. The added mobility advantage to a MM, however, has increased the complexity of the MM dynamic system. A robust controller that can deal with the added complexity of the MM dynamic system was therefore needed. The AFC which can be considered as one of the novelties in the research creates a torque feedback within the dynamic system to allow for the compensation of sudden disturbances in the dynamic system. AFC also allows faster computational performance by using a fixed value of the estimated inertia matrix (IN) of the system. A feedforward of the dynamic system was also implemented to complement the IN for a better trajectory tracking performance. A localisation technique using Kalman filter (KF) was also incorporated into the CPD-FAFC scheme to solve some MM navigation problems. A simulation and experimental studies were performed to validate the effectiveness of the MM controller. Simulation was performed using a co-simulation technique which combined the simultaneous execution of the MSC Adams and MATLAB/Simulink software. The experimental study was carried out using a custom built MM experimental rig (MMer) which was developed based on the mechatronic approach. A comparative studies between the proposed CPD-FAFC with other type of controllers was also performed to further strengthen the outcome of the system. The experimental results affirmed the effectiveness of the proposed AFC-based controller and were in good agreement with the simulation counterpart, thereby verifying and validating the proposed research concepts and models. |
---|