Ballistic mobility and saturation velocity in low-dimensional nanostructures
Ohm's law, a linear drift velocity response to the applied electric field, has been and continues to be the basis for characterizing, evaluating performance, and designing integrated circuits, but is shown not to hold its supremacy as channel lengths are being scaled down. In the high electric...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2009
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/7505/3/IsmailSaad2009_BallisticMobilityandSaturationVelocity.pdf http://eprints.utm.my/id/eprint/7505/ http://dx.doi.org/10.1016/j.mejo.2008.06.046 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.7505 |
---|---|
record_format |
eprints |
spelling |
my.utm.75052017-10-11T04:41:58Z http://eprints.utm.my/id/eprint/7505/ Ballistic mobility and saturation velocity in low-dimensional nanostructures Saad, Ismail Tan, Michael Loong Peng Ing, Hui Hii Ismail, Razali Arora, Vijay Kumar TK Electrical engineering. Electronics Nuclear engineering Ohm's law, a linear drift velocity response to the applied electric field, has been and continues to be the basis for characterizing, evaluating performance, and designing integrated circuits, but is shown not to hold its supremacy as channel lengths are being scaled down. In the high electric field, the collision-free ballistic transport is predicted, while in low electric field the transport remains predominantly scattering-limited in a long-channel. In a micro/nano-circuit, even a low logic voltage of 1 V gives an electric field that is above its critical value εc (εnot double greater-than signεc) triggering non-ohmic behavior that results in ballistic velocity saturation. The saturation velocity is an appropriate thermal velocity for a non-degenerate and Fermi velocity for a degenerate system with given dimensionality. A quantum emission may lower this ballistic velocity. The collision-free ballistic mobility in the ohmic domain arises when the channel length is smaller than the mean free path. The results presented will have a profound influence in interpreting the data on a variety of low-dimensional nanostructures. Elsevier 2009-03 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/7505/3/IsmailSaad2009_BallisticMobilityandSaturationVelocity.pdf Saad, Ismail and Tan, Michael Loong Peng and Ing, Hui Hii and Ismail, Razali and Arora, Vijay Kumar (2009) Ballistic mobility and saturation velocity in low-dimensional nanostructures. Microelectronics Journal, 40 (3). pp. 540-542. ISSN 0026-2692 (In Press) http://dx.doi.org/10.1016/j.mejo.2008.06.046 doi:10.1016/j.mejo.2008.06.046 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Saad, Ismail Tan, Michael Loong Peng Ing, Hui Hii Ismail, Razali Arora, Vijay Kumar Ballistic mobility and saturation velocity in low-dimensional nanostructures |
description |
Ohm's law, a linear drift velocity response to the applied electric field, has been and continues to be the basis for characterizing, evaluating performance, and designing integrated circuits, but is shown not to hold its supremacy as channel lengths are being scaled down. In the high electric field, the collision-free ballistic transport is predicted, while in low electric field the transport remains predominantly scattering-limited in a long-channel. In a micro/nano-circuit, even a low logic voltage of 1 V gives an electric field that is above its critical value εc (εnot double greater-than signεc) triggering non-ohmic behavior that results in ballistic velocity saturation. The saturation velocity is an appropriate thermal velocity for a non-degenerate and Fermi velocity for a degenerate system with given dimensionality. A quantum emission may lower this ballistic velocity. The collision-free ballistic mobility in the ohmic domain arises when the channel length is smaller than the mean free path. The results presented will have a profound influence in interpreting the data on a variety of low-dimensional nanostructures. |
format |
Article |
author |
Saad, Ismail Tan, Michael Loong Peng Ing, Hui Hii Ismail, Razali Arora, Vijay Kumar |
author_facet |
Saad, Ismail Tan, Michael Loong Peng Ing, Hui Hii Ismail, Razali Arora, Vijay Kumar |
author_sort |
Saad, Ismail |
title |
Ballistic mobility and saturation velocity in low-dimensional nanostructures |
title_short |
Ballistic mobility and saturation velocity in low-dimensional nanostructures |
title_full |
Ballistic mobility and saturation velocity in low-dimensional nanostructures |
title_fullStr |
Ballistic mobility and saturation velocity in low-dimensional nanostructures |
title_full_unstemmed |
Ballistic mobility and saturation velocity in low-dimensional nanostructures |
title_sort |
ballistic mobility and saturation velocity in low-dimensional nanostructures |
publisher |
Elsevier |
publishDate |
2009 |
url |
http://eprints.utm.my/id/eprint/7505/3/IsmailSaad2009_BallisticMobilityandSaturationVelocity.pdf http://eprints.utm.my/id/eprint/7505/ http://dx.doi.org/10.1016/j.mejo.2008.06.046 |
_version_ |
1643644786255593472 |
score |
13.222552 |