Effect of reflow profile on intermetallic compound formation

Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So f...

Full description

Saved in:
Bibliographic Details
Main Authors: Idris, Siti Rabiatull Aisha, Ourdjini, Ali, Mohamed Ariff, Azmah Hanim, Osman, Saliza Azlina
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/51021/1/SitiRabiatulAisha2013_EffectofReflowProfileonIntermetallicCompoundFormation.pdf
http://eprints.utm.my/id/eprint/51021/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So far, many papers have reported effects of cooling speed, type of solder pastes and solder fluxes on the reliability of lead-free solder joints. While the effects of reflow conditions on intermetallic compound (IMC) formation at the solder joint such as the atmosphere during the reflow process are still unclear. The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth. Several techniques of materials characterization including optical, image analysis, scanning electron microscopy and energy dispersive X-ray analysis will be used to characterise the intermetallics in terms of composition, thickness and morphology. In addition, the effects of cooling rate and isothermal aging were also studied for the solder alloy Sn–4Ag–0.5Cu on electroless nickel/immersion gold (ENIG) surface finish. From the study, it was found that reflowing under nitrogen atmosphere had better effect on IMC formation and growth compared to reflowing under air. Besides, the cooling rate of solder during reflow also appears to have a significant effect on the final structure of the solder joint, and controlling the growth behaviour of the IMC during subsequent isothermal aging.