Characterisation of pineapple cultivars under different storage conditions using infrared thermal imaging coupled with machine learning algorithms

The non-invasive ability of infrared thermal imaging has gained interest in various food classification and recognition tasks. In this work, infrared thermal imaging was used to distinguish different pineapple cultivars, i.e., MD2, Morris, and Josapine, which were subjected to different storage temp...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Ali, Maimunah, Hashim, Norhashila, Abd Aziz, Samsuzana, Lasekan, Ola
Format: Article
Published: MDPI 2022
Online Access:http://psasir.upm.edu.my/id/eprint/100663/
https://www.mdpi.com/2077-0472/12/7/1013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The non-invasive ability of infrared thermal imaging has gained interest in various food classification and recognition tasks. In this work, infrared thermal imaging was used to distinguish different pineapple cultivars, i.e., MD2, Morris, and Josapine, which were subjected to different storage temperatures, i.e., 5, 10, and 25 °C and a relative humidity of 85% to 90%. A total of 14 features from the thermal images were obtained to determine the variation in terms of image parameters among the different pineapple cultivars. Principal component analysis was applied for feature reduction in order to prevent any effect of significant difference between the selected features. Several types of machine learning algorithms were compared, including linear discriminant analysis, quadratic discriminant analysis, support vector machine, k-nearest neighbour, decision tree, and naïve Bayes, to obtain the best performance for the classification of pineapple cultivars. The results showed that support vector machine achieved the best performance from the combination of optimal image parameters with the highest classification rate of 100%. The ability of infrared thermal imaging coupled with machine learning approaches can be potentially used to distinguish pineapple cultivars, which could enhance the grading and sorting processes of the fruit.