High performance of a SOI-based lateral PIN photodiode using SiGe/Si multilayer quantum well
Silicon-on-insulator (SOI) based SiGe quantum well infrared pin photodiode has the potential of being a serious candidate for applications in sensing applications as well as in optical fiber communications. The present work investigates the performance of a virtual lateral PIN photodiode with a SiGe...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon-on-insulator (SOI) based SiGe quantum well infrared pin photodiode has the potential of being a serious candidate for applications in sensing applications as well as in optical fiber communications. The present work investigates the performance of a virtual lateral PIN photodiode with a SiGe/Si multi-quantum well structure. In this paper, 5 periods of stacked SiGe quantum wells were grown on Si(100). A lateral PIN photodiode consisting of the SiGe/Si multi-quantum well layers as the active absorption layer with intensity response in the 700-1600 nm wavelength range was demonstrated. The results obtained for responsivity, total quantum efficiency and frequency response were 0.89 A/W, 71% and 21 GHz respectively for design parameters of intrinsic region length of 6 ?m, photoabsorption layer thickness of 50 ?m, incident optical power of 1 mW/cm2 and bias voltage of 3 V. As a conclusion, the SiGe/Si multi-quantum well solution in achieving the desired high performance photodiode was achieved. � 2012 IEEE. |
---|