Design of a 4-bit ripple adder using Quantum-dot Cellular Automata (QCA)
Quantum-dot Cellular Automata (QCA) is one of the new emerging nanotechnologies explored as an alternative to current CMOS designs. This paper presents the fundamental concepts of QCA and QCA-based logic design. Basic QCA logic circuits such as the inverter, three-input majority gate and five-input...
保存先:
主要な著者: | , , |
---|---|
その他の著者: | |
フォーマット: | Conference paper |
出版事項: |
IEEE Computer Society
2023
|
主題: | |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | Quantum-dot Cellular Automata (QCA) is one of the new emerging nanotechnologies explored as an alternative to current CMOS designs. This paper presents the fundamental concepts of QCA and QCA-based logic design. Basic QCA logic circuits such as the inverter, three-input majority gate and five-input majority gate are studied and implemented using QCADesigner. To demonstrate the practical use of using QCA in logic design, a 4-bit ripple adder using a combined concepts from the conventional RCA and CLA is proposed using 20 three-input majority gates, 4 five-input majority gates and 12 inverters. The proposed adder uses 1246 cells which resulted in an area of 1.75um � 1.43um, and a latency of 5.75 clock cycles. � 2013 IEEE. |
---|