Function of PD-L1 in antitumor immunity of glioma cells

Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in th...

Full description

Saved in:
Bibliographic Details
Main Authors: Lou, Y.L., Shi, J., Guo, D., Qureshi, A.K., Song, L.J.
Format: Article
Published: Elsevier 2017
Subjects:
Online Access:http://eprints.um.edu.my/19107/
http://dx.doi.org/10.1016/j.sjbs.2015.06.025
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in the human glioma cell line were analyzed with quantitative RT-PCR and flow cytometer; and then expression of PD-L1 in tissue specimens of 10 glioma patients was treated with immunohistochemical analysis; glioma cell and allogeneic CD4+ and CD8+ T cells were co-cultured, and cytokine IFN-γ, IL-2 and IL-10 in cultured supernatant fluid were determined with ELISA; upon blocking the interaction between glioma cell and the immune cell with PD-L1 monoclonal antibody (5H1), surface markers on immune cells were analyzed using flow cytometer. All human glioma cell lines constitutively expressed PD-L1, and IFN-γ induced glioma cell to highly express PD-L1. It was shown through immunohistochemical analysis that glioma specimen expressed PD-L1, while expression of PD-L1 was not observed in normal tissue and normal human brain near the tumor location. The release of IFN-γ and IL-2 was inhibited, while IL-10 was increased slightly. Glioma cell may escape from immune recognition and injury with the help of PD-L1, which is a significant pathogenic mechanism of glioma.