Integrated smoothed location model and data reduction approaches for multi variables classification
Smoothed Location Model is a classification rule that deals with mixture of continuous variables and binary variables simultaneously. This rule discriminates groups in a parametric form using conditional distribution of the continuous variables given each pattern of the binary variables. To conduct...
Saved in:
主要作者: | Hashibah, Hamid |
---|---|
格式: | Thesis |
语言: | English English |
出版: |
2014
|
主题: | |
在线阅读: | https://etd.uum.edu.my/4420/1/s92365.pdf https://etd.uum.edu.my/4420/2/s92365_abstract.pdf https://etd.uum.edu.my/4420/ |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
A Novel Feature Selection Method for Classification of Medical Data Using Filters, Wrappers, and Embedded Approaches
由: Saba Bashi, et al.
出版: (2022) -
Automated Data Integration, Cleaning and Analysis for Technical Schools Data Management in Malaysia
由: Tajul Rosli, Razak
出版: (2010) -
An improved directed random walk framework for cancer classification using gene expression data
由: Seah, Choon Sen
出版: (2020) -
Text Extraction Algorithm for Web Text Classification
由: Theab, Mustafa Muwafak
出版: (2010) -
An Experimental Study of Classification Algorithms Training Performance
由: Aboalayon, Khald Ali I.
出版: (2005)