A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems
The major challenge in the design of Interval type-2 fuzzy logic system (IT2FLS) is to determine the optimal parameters for their antecedent and consequent parts. The most frequently used objective function for the design of IT2FLSs is root mean squared error (RMSE). However, other than RMSE, the ma...
Saved in:
Main Authors: | Hassan, S., Khanesar, M.A., Jaafar, J., Khosravi, A. |
---|---|
格式: | Article |
出版: |
Institute of Electrical and Electronics Engineers Inc.
2017
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015810351&doi=10.1109%2fSMC.2016.7844235&partnerID=40&md5=e21b238d7e6a8a96f871e0fcb4b97e8b http://eprints.utp.edu.my/20157/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Artificial bee colony optimization of interval type-2 fuzzy extreme learning system for chaotic data
由: Hassan, S., et al.
出版: (2016) -
A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting
由: Hassan, S., et al.
出版: (2016) -
Optimal parameters of an ELM-based interval type 2 fuzzy logic system: a hybrid learning algorithm
由: Hassan, S., et al.
出版: (2018) -
Training of interval type-2 fuzzy logic system using extreme learning machine for load forecasting
由: Hassan, S., et al.
出版: (2015) -
Nonlinear dynamic system identification using Volterra series: multi-objective optimization approach
由: Loghmanian, S. M. R., et al.
出版: (2011)