A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems
The major challenge in the design of Interval type-2 fuzzy logic system (IT2FLS) is to determine the optimal parameters for their antecedent and consequent parts. The most frequently used objective function for the design of IT2FLSs is root mean squared error (RMSE). However, other than RMSE, the ma...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015810351&doi=10.1109%2fSMC.2016.7844235&partnerID=40&md5=e21b238d7e6a8a96f871e0fcb4b97e8b http://eprints.utp.edu.my/20157/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.20157 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.201572018-04-22T14:43:46Z A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems Hassan, S. Khanesar, M.A. Jaafar, J. Khosravi, A. The major challenge in the design of Interval type-2 fuzzy logic system (IT2FLS) is to determine the optimal parameters for their antecedent and consequent parts. The most frequently used objective function for the design of IT2FLSs is root mean squared error (RMSE). However, other than RMSE, the maximum absolute error (MAE) for each of identification samples is very important. This paper propose a novel hybrid learning algorithm for the design of IT2FLS. The proposed algorithm benefits from the combination of extreme learning machine (ELM) and non-dominated sorting genetic algorithm (NSGAII) to tune the parameters of the consequent and antecedent parts of the IT2FLS, respectively. The proposed method is used for forecasting of nonlinear dynamic systems. It is shown that not only the proposed method results in low RMSE, MAE achieved is also satisfactory. © 2016 IEEE. Institute of Electrical and Electronics Engineers Inc. 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015810351&doi=10.1109%2fSMC.2016.7844235&partnerID=40&md5=e21b238d7e6a8a96f871e0fcb4b97e8b Hassan, S. and Khanesar, M.A. and Jaafar, J. and Khosravi, A. (2017) A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems. 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings . pp. 155-160. http://eprints.utp.edu.my/20157/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The major challenge in the design of Interval type-2 fuzzy logic system (IT2FLS) is to determine the optimal parameters for their antecedent and consequent parts. The most frequently used objective function for the design of IT2FLSs is root mean squared error (RMSE). However, other than RMSE, the maximum absolute error (MAE) for each of identification samples is very important. This paper propose a novel hybrid learning algorithm for the design of IT2FLS. The proposed algorithm benefits from the combination of extreme learning machine (ELM) and non-dominated sorting genetic algorithm (NSGAII) to tune the parameters of the consequent and antecedent parts of the IT2FLS, respectively. The proposed method is used for forecasting of nonlinear dynamic systems. It is shown that not only the proposed method results in low RMSE, MAE achieved is also satisfactory. © 2016 IEEE. |
format |
Article |
author |
Hassan, S. Khanesar, M.A. Jaafar, J. Khosravi, A. |
spellingShingle |
Hassan, S. Khanesar, M.A. Jaafar, J. Khosravi, A. A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
author_facet |
Hassan, S. Khanesar, M.A. Jaafar, J. Khosravi, A. |
author_sort |
Hassan, S. |
title |
A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
title_short |
A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
title_full |
A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
title_fullStr |
A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
title_full_unstemmed |
A multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
title_sort |
multi-objective genetic type-2 fuzzy extreme learning system for the identification of nonlinear dynamic systems |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015810351&doi=10.1109%2fSMC.2016.7844235&partnerID=40&md5=e21b238d7e6a8a96f871e0fcb4b97e8b http://eprints.utp.edu.my/20157/ |
_version_ |
1738656171766579200 |
score |
13.2442 |