A probabilistic data-driven method for human activity recognition
This paper proposes a probabilistic, time efficient, data-driven method for human low and medium level activity recognition and indoor tracking. The obtained results can be applied to a probabilistic reasoner for high level activity recognition. The proposed method is tested on Opportunity, a datase...
保存先:
主要な著者: | Foudeh, Pouyaa, Khorshidtalab, Aidab, Salim, Naomie |
---|---|
フォーマット: | 論文 |
出版事項: |
IOS Press
2018
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/85388/ https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais496 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Testing and analysis of the proposed data driven method on the opportunity human activity dataset
著者:: Foudeh, Pouya, 等
出版事項: (2016) -
Ontological, fully probabilistic knowledge model for human activity recognition
著者:: Foudeh, Pouya, 等
出版事項: (2023) -
Probabilistic ontologies and probabilistic ontology learning: significance and challenges
著者:: Foudeh, Pouya, 等
出版事項: (2011) -
Chemical named entities recognition: a review on approaches and applications
著者:: Eltyeb, Safaa, 等
出版事項: (2014) -
ANN-based Performance Analysis on Human Activity Recognition
著者:: Elzein, Nahla Mohammed, 等
出版事項: (2020)