Control of a gantry crane using input-shaping schemes with distributed delay

This paper presents simulation and real-time implementation of input-shaping schemes with a distributed delay for control of a gantry crane. Both open-loop and closed-loop input-shaping schemes are considered. Zero vibration and zero vibration derivative input shapers are designed for performance co...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad, Javad Maghsoudi, Mohamed, Zaharuddin, M., O. Tokhi, Husain, Abdul Rashid, Zainal Abidin, Mohamad Shukri
Format: Article
Published: Sage Publications Ltd 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/66215/
http://dx.doi.org/10.1177/0142331215607615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents simulation and real-time implementation of input-shaping schemes with a distributed delay for control of a gantry crane. Both open-loop and closed-loop input-shaping schemes are considered. Zero vibration and zero vibration derivative input shapers are designed for performance comparison in terms of trolley position response and level of sway reduction. Simulation and experimental results have shown that all the shapers are able to reduce payload sway significantly while maintaining satisfactory position response. Investigations with different cable lengths that correspond to ±20% changes in the sway frequency have shown the distributed delay-based shaper has asymmetric robustness behaviour. The shaper provides highest robustness for the case of 20% increase in the sway frequency but lower robustness for the case of 20% decrease. However, other schemes give symmetric robustness behaviour for both cases.