Hyperspectral imaging for predicting soluble solid content of starfruit
Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The objective of this research was to develop novel calibration model based on hyperspectral imaging to estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which cons...
保存先:
主要な著者: | Candra, Feri, Syed Abu Bakar, Syed Abd. Rahman |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Penerbit UTM Press
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/55637/1/SyedAbdRahman2015_HyperspectralImagingforPredictingSoluble.pdf http://eprints.utm.my/id/eprint/55637/ http://dx.doi.org/10.11113/jt.v73.3480 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Prediction of soluble solid content of starfruit using spectral imaging combined with partial least squares and support vector regression
著者:: Candra, F., 等
出版事項: (2016) -
Linear one-dimensional color feature for starfruit classification
著者:: Mohd. Mokji, Musa, 等
出版事項: (2007) -
Starfruit Grading Based on 2-Dimensional Color Map
著者:: Mokji, M.M., 等
出版事項: (2006) -
Visible and near infrared (VIS-NIR) spectroscopy: measurement and prediction of soluble solid content of apple
著者:: Abdul Rahim, Herlina, 等
出版事項: (2010) -
Starfruit classification based on linear hue computation
著者:: Mokji, M. M., 等
出版事項: (2007)