Hyperspectral imaging for predicting soluble solid content of starfruit

Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The objective of this research was to develop novel calibration model based on hyperspectral imaging to estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Candra, Feri, Syed Abu Bakar, Syed Abd. Rahman
Format: Article
Language:English
Published: Penerbit UTM Press 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/55637/1/SyedAbdRahman2015_HyperspectralImagingforPredictingSoluble.pdf
http://eprints.utm.my/id/eprint/55637/
http://dx.doi.org/10.11113/jt.v73.3480
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The objective of this research was to develop novel calibration model based on hyperspectral imaging to estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which consists of a near infrared camera, a spectrograph V10, a halogen lighting and a conveyor belt system, was used in this study to acquire hyperspectral images of the samples in visible and near infrared (500-1000 nm) regions. Partial least square (PLS) was used to build the model and to find the optimal wavelength. Two different masks were applied for obtaining the spectral data. The optimal wavelengths were evaluated using multi linear regression (MLR). The coefficient of determination (R2) for validation using the model with first mask (M1) and second mask (M2) were 0.82 and 0.80, respectively.