Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis)
Mussel shells is a macro zoobenthos that lives on soft substrates in the mud (infauna) and is classified as a bivalve. This research detects formalin in mussel shells utilizing an Electronic Nose comprised of gas sensor's array. The samples used were formalin mussel shells with several concentr...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/106919/1/ArdiyansyahSyahrom2023_VariationalAutoencoderAnalysisGasSensor.pdf http://eprints.utm.my/106919/ http://dx.doi.org/10.1016/j.sbsr.2023.100564 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.106919 |
---|---|
record_format |
eprints |
spelling |
my.utm.1069192024-08-01T05:53:15Z http://eprints.utm.my/106919/ Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) Cendra Devayana Putra, Cendra Devayana Putra Achmad Ilham Fanany Al Isyrofie, Achmad Ilham Fanany Al Isyrofie Suryani Dyah Astuti, Suryani Dyah Astuti Berliana Devianti Putri, Berliana Devianti Putri Dyah Rohmatul Ummah, Dyah Rohmatul Ummah Miratul Khasanah, Miratul Khasanah Perwira Annissa Dyah Permatasari, Perwira Annissa Dyah Permatasari Syahrom, Ardiyansyah Q Science (General) TA Engineering (General). Civil engineering (General) Mussel shells is a macro zoobenthos that lives on soft substrates in the mud (infauna) and is classified as a bivalve. This research detects formalin in mussel shells utilizing an Electronic Nose comprised of gas sensor's array. The samples used were formalin mussel shells with several concentrations from 100 ppm to 500 ppm with the addition of 100 ppm. The research was conducted using six sensors with a sampling time of 120 s. The output voltage from each sensor is then clustered based on principal component analysis and classified using several techniques, which are support vector machine, decision tree and random forest. We demonstrate that all classifiers have an accuracy of 1. The phenomenon occurs because all feature representations can produce enough information to classify data. Principal component analysis achieves the best score in preserving the local structure. PCA can keep an average of 33% nearest data in the same neighbourhood. While variational autoencoder can keep 14% nearest data in the same neighbour, and autoencoder can keep 8% nearest data in the same area. Elsevier B.V. 2023-06 Article PeerReviewed application/pdf en http://eprints.utm.my/106919/1/ArdiyansyahSyahrom2023_VariationalAutoencoderAnalysisGasSensor.pdf Cendra Devayana Putra, Cendra Devayana Putra and Achmad Ilham Fanany Al Isyrofie, Achmad Ilham Fanany Al Isyrofie and Suryani Dyah Astuti, Suryani Dyah Astuti and Berliana Devianti Putri, Berliana Devianti Putri and Dyah Rohmatul Ummah, Dyah Rohmatul Ummah and Miratul Khasanah, Miratul Khasanah and Perwira Annissa Dyah Permatasari, Perwira Annissa Dyah Permatasari and Syahrom, Ardiyansyah (2023) Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis). Sensing and Bio-Sensing Research, 40 (NA). pp. 1-10. ISSN 2214-1804 http://dx.doi.org/10.1016/j.sbsr.2023.100564 DOI:10.1016/j.sbsr.2023.100564 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) TA Engineering (General). Civil engineering (General) |
spellingShingle |
Q Science (General) TA Engineering (General). Civil engineering (General) Cendra Devayana Putra, Cendra Devayana Putra Achmad Ilham Fanany Al Isyrofie, Achmad Ilham Fanany Al Isyrofie Suryani Dyah Astuti, Suryani Dyah Astuti Berliana Devianti Putri, Berliana Devianti Putri Dyah Rohmatul Ummah, Dyah Rohmatul Ummah Miratul Khasanah, Miratul Khasanah Perwira Annissa Dyah Permatasari, Perwira Annissa Dyah Permatasari Syahrom, Ardiyansyah Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
description |
Mussel shells is a macro zoobenthos that lives on soft substrates in the mud (infauna) and is classified as a bivalve. This research detects formalin in mussel shells utilizing an Electronic Nose comprised of gas sensor's array. The samples used were formalin mussel shells with several concentrations from 100 ppm to 500 ppm with the addition of 100 ppm. The research was conducted using six sensors with a sampling time of 120 s. The output voltage from each sensor is then clustered based on principal component analysis and classified using several techniques, which are support vector machine, decision tree and random forest. We demonstrate that all classifiers have an accuracy of 1. The phenomenon occurs because all feature representations can produce enough information to classify data. Principal component analysis achieves the best score in preserving the local structure. PCA can keep an average of 33% nearest data in the same neighbourhood. While variational autoencoder can keep 14% nearest data in the same neighbour, and autoencoder can keep 8% nearest data in the same area. |
format |
Article |
author |
Cendra Devayana Putra, Cendra Devayana Putra Achmad Ilham Fanany Al Isyrofie, Achmad Ilham Fanany Al Isyrofie Suryani Dyah Astuti, Suryani Dyah Astuti Berliana Devianti Putri, Berliana Devianti Putri Dyah Rohmatul Ummah, Dyah Rohmatul Ummah Miratul Khasanah, Miratul Khasanah Perwira Annissa Dyah Permatasari, Perwira Annissa Dyah Permatasari Syahrom, Ardiyansyah |
author_facet |
Cendra Devayana Putra, Cendra Devayana Putra Achmad Ilham Fanany Al Isyrofie, Achmad Ilham Fanany Al Isyrofie Suryani Dyah Astuti, Suryani Dyah Astuti Berliana Devianti Putri, Berliana Devianti Putri Dyah Rohmatul Ummah, Dyah Rohmatul Ummah Miratul Khasanah, Miratul Khasanah Perwira Annissa Dyah Permatasari, Perwira Annissa Dyah Permatasari Syahrom, Ardiyansyah |
author_sort |
Cendra Devayana Putra, Cendra Devayana Putra |
title |
Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
title_short |
Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
title_full |
Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
title_fullStr |
Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
title_full_unstemmed |
Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus Edulis) |
title_sort |
variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (mytilus edulis) |
publisher |
Elsevier B.V. |
publishDate |
2023 |
url |
http://eprints.utm.my/106919/1/ArdiyansyahSyahrom2023_VariationalAutoencoderAnalysisGasSensor.pdf http://eprints.utm.my/106919/ http://dx.doi.org/10.1016/j.sbsr.2023.100564 |
_version_ |
1806442425901645824 |
score |
13.214268 |