Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)

Digital-to-analog converters (DACs) are essential operations in many digital systems which require data converters from digital form to analog form. DAC rely on the matched component to perform data conversion. However, matched components are nearly impossible to fabricate, there will always be mi...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Alias, Mohd Azim
Format: Monograph
Language:English
Published: Universiti Sains Malaysia 2018
Subjects:
Online Access:http://eprints.usm.my/53324/1/Current%20Steering%20Digital%20Analog%20Converter%20%28Dac%29%20Using%20Partial%20Binary%20Tree%20Network%20%28Pbtn%29_Mohd%20Azim%20Mohammad%20Alias_E3_2018.pdf
http://eprints.usm.my/53324/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.53324
record_format eprints
spelling my.usm.eprints.53324 http://eprints.usm.my/53324/ Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN) Mohammad Alias, Mohd Azim T Technology TK Electrical Engineering. Electronics. Nuclear Engineering Digital-to-analog converters (DACs) are essential operations in many digital systems which require data converters from digital form to analog form. DAC rely on the matched component to perform data conversion. However, matched components are nearly impossible to fabricate, there will always be mismatch errors which cause discrepancies between the desired value and designed value. Dynamic Element Matching (DEM) is commonly used to reduce component mismatch error. This technique is a randomization technique to select one of the appropriate codes for each of the digital input value before entering the DAC block. Using this technique, the time averages of the equivalent components at each of the component positions are equal or nearly equal to reduce the effects of component mismatches in electronic circuits. A complicated encoding is usually necessary for conventional DEM encoders which will lead to many of switch transitions happens at the same time and it will cause glitches in the output signal. Previous research is able to increase the boundaries of Partial Binary Tree Network (PBTN) to 8-Bits. In this research, DEM algorithm is used, known as Partial Binary Tree Network (PBTN) that been proposed from previous research that aims to push the boundaries of past research from 8-bits to 10-bits. Besides, in this research, the Current Controlled Current Source (CCCS) used to magnify the output current in previous research is replaced with operating amplifier. PBTN is used because it has lower complexity circuit and fewer glitches produce at the output signal. This thesis reports the simulation of 8-bit 1-MSB with DNL of -0.550197255 LSB, INL of 0.752682 LSB, the power consumption of 16.7 mW and for 10-Bit 1-MSB with DNL of -0.535378495 LSB, INL of 0.955382 LSB, the power consumption of 66.31 mW. Power consumption in this research achieved much lower than the previous research. Universiti Sains Malaysia 2018-06-01 Monograph NonPeerReviewed application/pdf en http://eprints.usm.my/53324/1/Current%20Steering%20Digital%20Analog%20Converter%20%28Dac%29%20Using%20Partial%20Binary%20Tree%20Network%20%28Pbtn%29_Mohd%20Azim%20Mohammad%20Alias_E3_2018.pdf Mohammad Alias, Mohd Azim (2018) Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN). Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Elektrik dan Elektronik. (Submitted)
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
spellingShingle T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
Mohammad Alias, Mohd Azim
Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
description Digital-to-analog converters (DACs) are essential operations in many digital systems which require data converters from digital form to analog form. DAC rely on the matched component to perform data conversion. However, matched components are nearly impossible to fabricate, there will always be mismatch errors which cause discrepancies between the desired value and designed value. Dynamic Element Matching (DEM) is commonly used to reduce component mismatch error. This technique is a randomization technique to select one of the appropriate codes for each of the digital input value before entering the DAC block. Using this technique, the time averages of the equivalent components at each of the component positions are equal or nearly equal to reduce the effects of component mismatches in electronic circuits. A complicated encoding is usually necessary for conventional DEM encoders which will lead to many of switch transitions happens at the same time and it will cause glitches in the output signal. Previous research is able to increase the boundaries of Partial Binary Tree Network (PBTN) to 8-Bits. In this research, DEM algorithm is used, known as Partial Binary Tree Network (PBTN) that been proposed from previous research that aims to push the boundaries of past research from 8-bits to 10-bits. Besides, in this research, the Current Controlled Current Source (CCCS) used to magnify the output current in previous research is replaced with operating amplifier. PBTN is used because it has lower complexity circuit and fewer glitches produce at the output signal. This thesis reports the simulation of 8-bit 1-MSB with DNL of -0.550197255 LSB, INL of 0.752682 LSB, the power consumption of 16.7 mW and for 10-Bit 1-MSB with DNL of -0.535378495 LSB, INL of 0.955382 LSB, the power consumption of 66.31 mW. Power consumption in this research achieved much lower than the previous research.
format Monograph
author Mohammad Alias, Mohd Azim
author_facet Mohammad Alias, Mohd Azim
author_sort Mohammad Alias, Mohd Azim
title Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
title_short Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
title_full Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
title_fullStr Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
title_full_unstemmed Current Steering Digital Analog Converter (DAC) Using Partial Binary Tree Network (PBTN)
title_sort current steering digital analog converter (dac) using partial binary tree network (pbtn)
publisher Universiti Sains Malaysia
publishDate 2018
url http://eprints.usm.my/53324/1/Current%20Steering%20Digital%20Analog%20Converter%20%28Dac%29%20Using%20Partial%20Binary%20Tree%20Network%20%28Pbtn%29_Mohd%20Azim%20Mohammad%20Alias_E3_2018.pdf
http://eprints.usm.my/53324/
_version_ 1738511189038596096
score 13.18916