Enhanced State of Charge Estimation for Lithiumion Batteries using Polynomial Voltage Approximation

The escalating adoption of electric machinery as a replacement for the fossil fuel-powered counterparts has underscored the critical need for robust energy storage solutions, with lithium-ion (Li-ion) batteries emerging as a cornerstone technology, particularly in electric vehicles (EVs). However, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Karna S., Satpathy P.R., Bhowmik P.
Other Authors: 59527815400
Format: Conference paper
Published: Institute of Electrical and Electronics Engineers Inc. 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The escalating adoption of electric machinery as a replacement for the fossil fuel-powered counterparts has underscored the critical need for robust energy storage solutions, with lithium-ion (Li-ion) batteries emerging as a cornerstone technology, particularly in electric vehicles (EVs). However, the intrinsic vulnerability of Li-ion batteries to degradation, caused by cyclic charge-discharge operations, poses significant challenges to accurate state of charge (SOC) estimation and capacity assessment, thereby impeding optimal EV performance [12] [16]. This study presents a novel approach to address these challenges by elucidating a direct correlation between battery voltage and SOC. Through rigorous empirical experimentation and advanced mathematical modelling, a polynomial equation is derived to precisely quantify SOC dynamics in response to voltage fluctuations. This framework facilitates real-time capacity estimation, empowering proactive management of EV energy systems [18]. By integrating empirical data with sophisticated mathematical analysis, this research contributes to deeper understanding of Li-ion battery behavior, paving the way for enhanced energy storage management strategies. The findings hold promise for optimizing EV efficiency, reliability, and longevity in the evolving landscape of electric machinery. ? 2024 IEEE.