Enhanced State of Charge Estimation for Lithiumion Batteries using Polynomial Voltage Approximation
The escalating adoption of electric machinery as a replacement for the fossil fuel-powered counterparts has underscored the critical need for robust energy storage solutions, with lithium-ion (Li-ion) batteries emerging as a cornerstone technology, particularly in electric vehicles (EVs). However, t...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2025
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The escalating adoption of electric machinery as a replacement for the fossil fuel-powered counterparts has underscored the critical need for robust energy storage solutions, with lithium-ion (Li-ion) batteries emerging as a cornerstone technology, particularly in electric vehicles (EVs). However, the intrinsic vulnerability of Li-ion batteries to degradation, caused by cyclic charge-discharge operations, poses significant challenges to accurate state of charge (SOC) estimation and capacity assessment, thereby impeding optimal EV performance [12] [16]. This study presents a novel approach to address these challenges by elucidating a direct correlation between battery voltage and SOC. Through rigorous empirical experimentation and advanced mathematical modelling, a polynomial equation is derived to precisely quantify SOC dynamics in response to voltage fluctuations. This framework facilitates real-time capacity estimation, empowering proactive management of EV energy systems [18]. By integrating empirical data with sophisticated mathematical analysis, this research contributes to deeper understanding of Li-ion battery behavior, paving the way for enhanced energy storage management strategies. The findings hold promise for optimizing EV efficiency, reliability, and longevity in the evolving landscape of electric machinery. ? 2024 IEEE. |
---|