Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India
The Damoh district, which is located in the central India and characterized by limestone, shales, and sandstone compact rock. The district has been facing groundwater development challenges and problems for several decades. To facilitate groundwater management, it is crucial to monitoring and planni...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Academic Press Inc.
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-34179 |
---|---|
record_format |
dspace |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
AHP Groundwater Hydrogeological LULC Madhya Pradesh ROC Analytic Hierarchy Process Calcium Carbonate Ecosystem Environmental Monitoring Geographic Information Systems Groundwater India Damoh India Madhya Pradesh ground water limestone calcium carbonate ground water aquifer artificial recharge climate change drainage GIS limestone lineament percolation rainfall runoff sandstone watershed analytic hierarchy process Article climate change drought environmental parameters geographic and geological parameters geographic information system geology geomorphology groundwater potential zone hydrology India land use nonhuman rock sandstone shale surface runoff topographic ruggedness index topographic wetness index water insecurity analytic hierarchy process ecosystem environmental monitoring procedures |
spellingShingle |
AHP Groundwater Hydrogeological LULC Madhya Pradesh ROC Analytic Hierarchy Process Calcium Carbonate Ecosystem Environmental Monitoring Geographic Information Systems Groundwater India Damoh India Madhya Pradesh ground water limestone calcium carbonate ground water aquifer artificial recharge climate change drainage GIS limestone lineament percolation rainfall runoff sandstone watershed analytic hierarchy process Article climate change drought environmental parameters geographic and geological parameters geographic information system geology geomorphology groundwater potential zone hydrology India land use nonhuman rock sandstone shale surface runoff topographic ruggedness index topographic wetness index water insecurity analytic hierarchy process ecosystem environmental monitoring procedures Moharir K.N. Pande C.B. Gautam V.K. Singh S.K. Rane N.L. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
description |
The Damoh district, which is located in the central India and characterized by limestone, shales, and sandstone compact rock. The district has been facing groundwater development challenges and problems for several decades. To facilitate groundwater management, it is crucial to monitoring and planning based on geology, slope, relief, land use, geomorphology, and the types of the basaltic aquifer in the drought-groundwater deficit area. Moreover, the majority of farmers in the area are heavily dependent on groundwater for their crops. Therefore, delineation of groundwater potential zones (GPZ) is essential, which is defined based on various thematic layers, including geology, geomorphology, slope, aspect, drainage density, lineament density, topographic wetness index (TWI), topographic ruggedness index (TRI), and land use/land cover (LULC). The processing and analysis of this information were carried out using Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) methods. The validity of the results was trained and tested using Receiver Operating Characteristic (ROC) curves, which showed training and testing accuracies of 0.713 and 0.701, respectively. The GPZ map was classified into five classes such as very high, high, moderate, low, and very low. The study revealed that approximately 45% of the area falls under the moderate GPZ, while only 30% of the region is classified as having a high GPZ. The area receives high rainfall but has very high surface runoff due to no proper developed soil and lack of water conservation structures. Every summer season show a declined groundwater level. In this context, results of study area are useful to maintain the groundwater under climate change and summer season. The GPZ map plays an important role in implementing artificial recharge structures (ARS), such as percolation ponds, tube wells, bore wells, cement nala bunds (CNBs), continuous contour trenching (CCTs), and others for development of ground level. This study is significant for developing sustainable groundwater management policies in semi-arid regions, that are experiencing climate change. Proper groundwater potential mapping and watershed development policies can help mitigate the effects of drought, climate change, and water scarcity, while preserving the ecosystem in the Limestone, Shales, and Sandstone compact rock region. The results of this study are essential for farmers, regional planners, policy-makers, climate change experts, and local governments, enabling them to understand the groundwater development possibilities in the study area. � 2023 Elsevier Inc. |
author2 |
57193546415 |
author_facet |
57193546415 Moharir K.N. Pande C.B. Gautam V.K. Singh S.K. Rane N.L. |
format |
Article |
author |
Moharir K.N. Pande C.B. Gautam V.K. Singh S.K. Rane N.L. |
author_sort |
Moharir K.N. |
title |
Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
title_short |
Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
title_full |
Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
title_fullStr |
Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
title_full_unstemmed |
Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India |
title_sort |
integration of hydrogeological data, gis and ahp techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the damoh district, (mp) central india |
publisher |
Academic Press Inc. |
publishDate |
2024 |
_version_ |
1814061108254736384 |
spelling |
my.uniten.dspace-341792024-10-14T11:18:18Z Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India Moharir K.N. Pande C.B. Gautam V.K. Singh S.K. Rane N.L. 57193546415 57193547008 57687175000 57198063860 57219453239 AHP Groundwater Hydrogeological LULC Madhya Pradesh ROC Analytic Hierarchy Process Calcium Carbonate Ecosystem Environmental Monitoring Geographic Information Systems Groundwater India Damoh India Madhya Pradesh ground water limestone calcium carbonate ground water aquifer artificial recharge climate change drainage GIS limestone lineament percolation rainfall runoff sandstone watershed analytic hierarchy process Article climate change drought environmental parameters geographic and geological parameters geographic information system geology geomorphology groundwater potential zone hydrology India land use nonhuman rock sandstone shale surface runoff topographic ruggedness index topographic wetness index water insecurity analytic hierarchy process ecosystem environmental monitoring procedures The Damoh district, which is located in the central India and characterized by limestone, shales, and sandstone compact rock. The district has been facing groundwater development challenges and problems for several decades. To facilitate groundwater management, it is crucial to monitoring and planning based on geology, slope, relief, land use, geomorphology, and the types of the basaltic aquifer in the drought-groundwater deficit area. Moreover, the majority of farmers in the area are heavily dependent on groundwater for their crops. Therefore, delineation of groundwater potential zones (GPZ) is essential, which is defined based on various thematic layers, including geology, geomorphology, slope, aspect, drainage density, lineament density, topographic wetness index (TWI), topographic ruggedness index (TRI), and land use/land cover (LULC). The processing and analysis of this information were carried out using Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) methods. The validity of the results was trained and tested using Receiver Operating Characteristic (ROC) curves, which showed training and testing accuracies of 0.713 and 0.701, respectively. The GPZ map was classified into five classes such as very high, high, moderate, low, and very low. The study revealed that approximately 45% of the area falls under the moderate GPZ, while only 30% of the region is classified as having a high GPZ. The area receives high rainfall but has very high surface runoff due to no proper developed soil and lack of water conservation structures. Every summer season show a declined groundwater level. In this context, results of study area are useful to maintain the groundwater under climate change and summer season. The GPZ map plays an important role in implementing artificial recharge structures (ARS), such as percolation ponds, tube wells, bore wells, cement nala bunds (CNBs), continuous contour trenching (CCTs), and others for development of ground level. This study is significant for developing sustainable groundwater management policies in semi-arid regions, that are experiencing climate change. Proper groundwater potential mapping and watershed development policies can help mitigate the effects of drought, climate change, and water scarcity, while preserving the ecosystem in the Limestone, Shales, and Sandstone compact rock region. The results of this study are essential for farmers, regional planners, policy-makers, climate change experts, and local governments, enabling them to understand the groundwater development possibilities in the study area. � 2023 Elsevier Inc. Final 2024-10-14T03:18:18Z 2024-10-14T03:18:18Z 2023 Article 10.1016/j.envres.2023.115832 2-s2.0-85152734108 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152734108&doi=10.1016%2fj.envres.2023.115832&partnerID=40&md5=60a530ad6d3219299b5c34c972fd734b https://irepository.uniten.edu.my/handle/123456789/34179 228 115832 Academic Press Inc. Scopus |
score |
13.214268 |