Lactic acid fermentation of food waste as storage method prior to biohydrogen production: Effect of storage temperature on biohydrogen potential and microbial communities

This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 �C, 10 �C, 23 �C, 35 �C, 45 �C, and 55 �C) for 15 days followed by biological hydrog...

Full description

Saved in:
Bibliographic Details
Main Authors: Roslan E., Magdalena J.A., Mohamed H., Akhiar A., Shamsuddin A.H., Carrere H., Trably E.
Other Authors: 57189299886
Format: Article
Published: Elsevier Ltd 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 �C, 10 �C, 23 �C, 35 �C, 45 �C, and 55 �C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 � 20.6 mM and 234.4 � 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 � 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures. � 2023 Elsevier Ltd