A low dispersion probabilistic roadmaps (LD-PRM) algorithm for fast and efficient sampling-based motion planning

In this paper, we propose a new learning strategy for a probabilistic roadmap (PRM) algorithm. The proposed strategy is based on reducing the dispersion of the generated set of samples. We defined a forbidden range around each selected sample and ignored this region in further sampling. The resultan...

詳細記述

保存先:
書誌詳細
主要な著者: Khaksar W., Hong T.S., Khaksar M., Motlagh O.
その他の著者: 54960984900
フォーマット: 論文
出版事項: 2023
主題:
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:In this paper, we propose a new learning strategy for a probabilistic roadmap (PRM) algorithm. The proposed strategy is based on reducing the dispersion of the generated set of samples. We defined a forbidden range around each selected sample and ignored this region in further sampling. The resultant planner, called low dispersion-PRM, is an effective multi-query samplingbased planner that is able to solve motion planning queries with smaller graphs. Simulation results indicated that the proposed planner improved the performance of the original PRM and other low-dispersion variants of PRM. Furthermore, the proposed planner is able to solve difficult motion planning instances, including narrow passages and bug traps, which represent particularly difficult tasks for classic sampling-based algorithms. For measuring the uniformity of the generated samples, a new algorithm was created to measure the dispersion of a set of samples based on a predetermined resolution. � 2013 Khaksar et al.