Structural, morphological, electrical and electron transport studies in ZnO�rGO (wt%�=�0.01, 0.05 and 0.1) based dye-sensitized solar cell

Atomic force microscopy; Chemical analysis; Deposition; Efficiency; Electron transport properties; Graphene; II-VI semiconductors; Open circuit voltage; Oxide films; Oxide minerals; Reduced Graphene Oxide; Scanning electron microscopy; Substrates; Thin films; Tin oxides; X ray powder diffraction; Zi...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullah H., Atiqah N.A., Omar A., Asshaari I., Mahalingam S., Razali Z., Shaari S., Mandeep J.S., Misran H.
Other Authors: 26025061200
Format: Article
Published: Springer Science and Business Media, LLC 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomic force microscopy; Chemical analysis; Deposition; Efficiency; Electron transport properties; Graphene; II-VI semiconductors; Open circuit voltage; Oxide films; Oxide minerals; Reduced Graphene Oxide; Scanning electron microscopy; Substrates; Thin films; Tin oxides; X ray powder diffraction; Zinc oxide; Zinc sulfide; ZnO nanoparticles; Chemical bath deposition methods; Chemical diffusion coefficients; Fluorine doped tin oxide; Hexagonal wurtzite structure; Photocurrent density; Photovoltaic performance; Power conversion efficiencies; Transport resistance; Dye-sensitized solar cells