Overview of PSO for Optimizing Process Parameters of Machining
In the current trends of optimizing machining process parameters, various evolutionary or meta-heuristic techniques such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO) and Artificial Bee Colony algorithm (ABC) have been used. T...
Saved in:
Main Authors: | Norfadzlan, Yusup, Azlan, Mohd Zain, Siti Zaiton, Mohd Hashim |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2012
|
Subjects: | |
Online Access: | http://ir.unimas.my/id/eprint/17591/1/Overview%20of%20PSO%20for%20Optimizing%20Process%20Parameters%20of%20Machining%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/17591/ http://www.sciencedirect.com/science/article/pii/S1877705812000744 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Overview of PSO for optimizing process parameters of machining
by: Yusup, Norfadzlan, et al.
Published: (2012) -
Evolutionary techniques in optimizing machining parameters: review and recent applications (2007-2011)
by: Mohd. Zain, Azlan, et al.
Published: (2012) -
Estimation of optimal machining control parameters using artificial bee colony
by: Norfadzlan, Yusup, et al.
Published: (2013) -
Artificial bee colony in optimizing process parameters of surface roughness in end milling and abrasive waterjet machining
by: Norfadzlan, Bin Yusup
Published: (2012) -
Overview of nsga-ii for optimizing machining process parameters
by: Mohd. Zain, Azlan
Published: (2011)