Artificial Neural Controller Synthesis in Autonomous Mobile Cognition

This paper describes a new approach in using multi-objective evolutionary algorithms in evolving the neural network that acts as a controller for the phototaxis and radio frequency localization behaviors of a virtual Khepera robot simulated in a 3D, physics-based environment. The Pareto-frontier Dif...

Full description

Saved in:
Bibliographic Details
Main Authors: Chin Kim On, Jason Teo
Format: Article
Language:English
English
Published: International Association of Engineers 2009
Online Access:https://eprints.ums.edu.my/id/eprint/21715/1/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf
https://eprints.ums.edu.my/id/eprint/21715/7/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf
https://eprints.ums.edu.my/id/eprint/21715/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ums.eprints.21715
record_format eprints
spelling my.ums.eprints.217152021-08-30T12:48:17Z https://eprints.ums.edu.my/id/eprint/21715/ Artificial Neural Controller Synthesis in Autonomous Mobile Cognition Chin Kim On Jason Teo This paper describes a new approach in using multi-objective evolutionary algorithms in evolving the neural network that acts as a controller for the phototaxis and radio frequency localization behaviors of a virtual Khepera robot simulated in a 3D, physics-based environment. The Pareto-frontier Differential Evolution (PDE) algorithm is utilized to generate the Pareto optimal sets through a 3-layer feed-forward artificial neural network that optimize the conflicting objectives of robot behavior and network complexity, where the two different types of robot behaviors are phototaxis and RF-localization, respectively. Thus, there are two fitness functions proposed in this study. The testing results showed the robot was able to track the light source and also home-in towards the RF-signal source successfully. Furthermore, three additional testing results have been incorporated from the robustness perspective: different robot localizations, inclusion of two obstacles, and moving signal source experiments, respectively. The testing results also showed that the robot was robust to these different environments used during the testing phases. Hence, the results demonstrated that the utilization of the evolutionary multi-objective approach in evolutionary robotics can be practically used to generate controllers for phototaxis and RF-localization behaviors in autonomous mobile robots International Association of Engineers 2009 Article PeerReviewed text en https://eprints.ums.edu.my/id/eprint/21715/1/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf text en https://eprints.ums.edu.my/id/eprint/21715/7/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf Chin Kim On and Jason Teo (2009) Artificial Neural Controller Synthesis in Autonomous Mobile Cognition. IAENG International Journal of Computer Science. ISSN 1819-656X
institution Universiti Malaysia Sabah
building UMS Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sabah
content_source UMS Institutional Repository
url_provider http://eprints.ums.edu.my/
language English
English
description This paper describes a new approach in using multi-objective evolutionary algorithms in evolving the neural network that acts as a controller for the phototaxis and radio frequency localization behaviors of a virtual Khepera robot simulated in a 3D, physics-based environment. The Pareto-frontier Differential Evolution (PDE) algorithm is utilized to generate the Pareto optimal sets through a 3-layer feed-forward artificial neural network that optimize the conflicting objectives of robot behavior and network complexity, where the two different types of robot behaviors are phototaxis and RF-localization, respectively. Thus, there are two fitness functions proposed in this study. The testing results showed the robot was able to track the light source and also home-in towards the RF-signal source successfully. Furthermore, three additional testing results have been incorporated from the robustness perspective: different robot localizations, inclusion of two obstacles, and moving signal source experiments, respectively. The testing results also showed that the robot was robust to these different environments used during the testing phases. Hence, the results demonstrated that the utilization of the evolutionary multi-objective approach in evolutionary robotics can be practically used to generate controllers for phototaxis and RF-localization behaviors in autonomous mobile robots
format Article
author Chin Kim On
Jason Teo
spellingShingle Chin Kim On
Jason Teo
Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
author_facet Chin Kim On
Jason Teo
author_sort Chin Kim On
title Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
title_short Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
title_full Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
title_fullStr Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
title_full_unstemmed Artificial Neural Controller Synthesis in Autonomous Mobile Cognition
title_sort artificial neural controller synthesis in autonomous mobile cognition
publisher International Association of Engineers
publishDate 2009
url https://eprints.ums.edu.my/id/eprint/21715/1/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf
https://eprints.ums.edu.my/id/eprint/21715/7/Artificial%20Neural%20Controller%20Synthesis%20in%20Autonomous%20Mobile%20Cognition.pdf
https://eprints.ums.edu.my/id/eprint/21715/
_version_ 1760229878393733120
score 13.214268