Evolutionary automated radial basis function neural network for multiphase flowing bottom-hole pressure prediction
Accurate multiphase flowing bottom-hole pressure prediction within wellbores is a critical requirement to improve tube design and production optimization. Existing models often struggle to achieve reliable accuracy across the full range of operational conditions encountered in oil and gas wells. Thi...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/43134/1/Evolutionary%20automated%20radial%20basis%20function%20neural%20network_ABST.pdf http://umpir.ump.edu.my/id/eprint/43134/2/Evolutionary%20automated%20radial%20basis%20function%20neural%20network.pdf http://umpir.ump.edu.my/id/eprint/43134/ https://doi.org/10.1016/j.fuel.2024.132666 https://doi.org/10.1016/j.fuel.2024.132666 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Internet
http://umpir.ump.edu.my/id/eprint/43134/1/Evolutionary%20automated%20radial%20basis%20function%20neural%20network_ABST.pdfhttp://umpir.ump.edu.my/id/eprint/43134/2/Evolutionary%20automated%20radial%20basis%20function%20neural%20network.pdf
http://umpir.ump.edu.my/id/eprint/43134/
https://doi.org/10.1016/j.fuel.2024.132666
https://doi.org/10.1016/j.fuel.2024.132666