Training multilayer neural network based on optimal control theory for limited computational resources
Backpropagation (BP)-based gradient descent is the general approach to train a neural network with a multilayer perceptron. However, BP is inherently slow in learning, and it sometimes traps at local minima, mainly due to a constant learning rate. This pre-fixed learning rate regularly leads the BP...
保存先:
主要な著者: | Alkawaz, Ali Najem, Kanesan, Jeevan, Khairuddin, Anis Salwa Mohd, Badruddin, Irfan Anjum, Kamangar, Sarfaraz, Hussien, Mohamed, Baig, Maughal Ahmed Ali, Ahammad, N. Ameer |
---|---|
フォーマット: | 論文 |
出版事項: |
MDPI
2023
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/38665/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Adaptive self-organizing map using optimal control
著者:: Alkawaz, Ali Najem, 等
出版事項: (2023) -
Optimizing chemotherapy treatment outcomes using metaheuristic optimization algorithms: A case study
著者:: Samy, Prakas Gopal, 等
出版事項: (2024) -
Dual therapy of cancer using optimal control supported by swarm intelligence
著者:: Tan, Poh Ling, 等
出版事項: (2024) -
Intelligent charging control of power aggregator for electric vehicles using optimal control
著者:: Alkawaz, Ali Najem, 等
出版事項: (2021) -
Day-ahead electricity price forecasting based on hybrid regression model
著者:: Alkawaz, Ali Najem, 等
出版事項: (2022)