Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease

The emergence outbreak caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received significant attention on the global risks. Due to itscrucial role in viral replication, the main protease 3CL(pro) is an important target for drug discovery and development to combat CO...

Full description

Saved in:
Bibliographic Details
Main Authors: Somboon, Tuanjai, Mahalapbutr, Panupong, Sanachai, Kamonpan, Maitarad, Phornphimon, Lee, Vannajan Sanghiran, Hannongbua, Supot, Rungrotmongkol, Thanyada
Format: Article
Published: Elsevier 2021
Subjects:
Online Access:http://eprints.um.edu.my/28636/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The emergence outbreak caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received significant attention on the global risks. Due to itscrucial role in viral replication, the main protease 3CL(pro) is an important target for drug discovery and development to combat COVID-19. In this work, the structural and dynamic behaviors as well as binding efficiency of the four peptidomimetic inhibitors (N3, 11a, 13b, and 14b) recently co-crystalized with SARS-CoV-2 3CL(pro) were studied and compared using all-atom molecular dynamics (MD) simulations and solvated interaction energy-based binding free energy calculations. The per-residue decomposition free energy results suggested that the key residues involved in inhibitors binding were H41, M49, L141-C145, H163-E166, P168, and Q189-T190 in the domains I and II. The van der Waals interaction yielded the main energy contribution stabilizing all the focused inhibitors. Besides, their hydrogen bond formations with F140, G143, C145, H164, E166, and Q189 residues in the substrate-binding pocket were also essential for strengthening the molecular complexation. The predicted binding affinity of the four peptidomimetic inhibitors agreed with the reported experimental data, and the 13b showed the most efficient binding to SARS-CoV-2 3CL(pro). From rational drug design strategies based on 13b, the polar moieties (e.g., benzamide) and the bulky N-terminal protecting groups (e.g, thiazole) should be introduced to P1' and P4 sites in order to enhance H-bonds and hydrophobic interactions, respectively. We hope that the obtained structural and energetic information could be beneficial for developing novel SARS-CoV-2 3CL(pro) inhibitors with higher inhibitory potency to combat COVID-19. (C) 2020 Elsevier B.V. All rights reserved.