Naproxen release aspect from boron-doped carbon nanodots as a bifunctional agent in cancer therapy
In this present study, boron-carbon nanodots were synthesized by the hydrothermal method. Boron-carbon nanodots were prepared by varying the concentration ratios of boronic acid and citric acid: 1 : 25, 2 : 1, and 25 : 1, respectively. The precursors were then poured into a Teflon autoclave and heat...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Royal Society of Chemistry
2021
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/28013/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this present study, boron-carbon nanodots were synthesized by the hydrothermal method. Boron-carbon nanodots were prepared by varying the concentration ratios of boronic acid and citric acid: 1 : 25, 2 : 1, and 25 : 1, respectively. The precursors were then poured into a Teflon autoclave and heated at 240 degrees for 4 h. This research aims to synthesise and evaluate the potential of boron-carbon nanodots as a bioimaging agent and naproxen delivery carrier. An X-ray diffractogram showed that the boron-carbon nanodots were amorphous. To analyse the functional groups, FTIR and XPS analysis was carried out. Spectrofluorometric analysis (lambda(ex) 320 nm) showed that the formulation of boron-carbon nanodots 2 : 1 (BCD 2 : 1) has the most ideal fluorescent properties at lambda(em) 453 nm, whereas UV-vis analysis showed lambda(max) at 223 nm, with a quantum yield of 52.29%. A confocal laser scanning micrograph and toxicity test (MTT assays) showed that boron-carbon nanodots delivered naproxen efficiently with loading amount and loading efficiency of naproxen 28% and 65%, respectively. Furthermore, it induced an anticancer effect in HeLa cells. This result indicated that boron-carbon nanodots can be used as a bioimaging agent and naproxen delivery carrier. |
---|