Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation

To enhance the stability of the anticancer drug gemcitabine (2′-deoxy-2′,2′-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecu...

Full description

Saved in:
Bibliographic Details
Main Authors: Kiew, Lik Voon, Cheong, Soon Keng, Sidik, Khalifah, Chung, Lip Yong
Format: Article
Language:English
Published: Elsevier 2010
Subjects:
Online Access:http://eprints.um.edu.my/2642/1/Kiew_LV_2010.pdf
http://eprints.um.edu.my/2642/
https://doi.org/10.1016/j.ijpharm.2010.03.010
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.2642
record_format eprints
spelling my.um.eprints.26422019-11-11T04:04:21Z http://eprints.um.edu.my/2642/ Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation Kiew, Lik Voon Cheong, Soon Keng Sidik, Khalifah Chung, Lip Yong R Medicine (General) RM Therapeutics. Pharmacology RS Pharmacy and materia medica To enhance the stability of the anticancer drug gemcitabine (2′-deoxy-2′,2′-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecular weight, HPLC to determine its purity and degree of drug loading, and NMR to elucidate the structure. In vitro aqueous hydrolytic studies showed that the gemcitabine release from the polymeric drug conjugate was pH dependent, and that the conjugation to PG-H improved its stability in human plasma. The release of the bound gemcitabine from PG-G in plasma was mediated by a hydrolytic process. It began with a lag phase, followed by linear release between 12 and 48 h, and reached equilibrium at 72 h with 51% of the gemcitabine released. In vitro cytotoxicity studies using MCF-7 and MDA-MB-231 human mammary cancer cells, as well as human dermal fibroblasts (HDF), showed that PG-G displayed a lower dose dependent cytotoxic effect with respect to the parent drug gemcitabine. On the other hand, in 4T1 mouse mammary tumour cells, PG-G and gemcitabine showed similar toxicities. Gemcitabine was more than likely released hydrolytically from PG-G and taken up by MCF-7, MDA-MB-231 and HDF, whereas both released gemcitabine and PG-G were taken up by 4T1 to mediate the observed cytotoxicities. The improved stability and extended sustained release profile may render PG-G a potential anticancer prodrug. Elsevier 2010 Article NonPeerReviewed text en http://eprints.um.edu.my/2642/1/Kiew_LV_2010.pdf Kiew, Lik Voon and Cheong, Soon Keng and Sidik, Khalifah and Chung, Lip Yong (2010) Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation. International Journal of Pharmaceutics, 391 (1-2). pp. 212-220. ISSN 0378-5173 https://doi.org/10.1016/j.ijpharm.2010.03.010 doi:10.1016/j.ijpharm.2010.03.010
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
language English
topic R Medicine (General)
RM Therapeutics. Pharmacology
RS Pharmacy and materia medica
spellingShingle R Medicine (General)
RM Therapeutics. Pharmacology
RS Pharmacy and materia medica
Kiew, Lik Voon
Cheong, Soon Keng
Sidik, Khalifah
Chung, Lip Yong
Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
description To enhance the stability of the anticancer drug gemcitabine (2′-deoxy-2′,2′-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecular weight, HPLC to determine its purity and degree of drug loading, and NMR to elucidate the structure. In vitro aqueous hydrolytic studies showed that the gemcitabine release from the polymeric drug conjugate was pH dependent, and that the conjugation to PG-H improved its stability in human plasma. The release of the bound gemcitabine from PG-G in plasma was mediated by a hydrolytic process. It began with a lag phase, followed by linear release between 12 and 48 h, and reached equilibrium at 72 h with 51% of the gemcitabine released. In vitro cytotoxicity studies using MCF-7 and MDA-MB-231 human mammary cancer cells, as well as human dermal fibroblasts (HDF), showed that PG-G displayed a lower dose dependent cytotoxic effect with respect to the parent drug gemcitabine. On the other hand, in 4T1 mouse mammary tumour cells, PG-G and gemcitabine showed similar toxicities. Gemcitabine was more than likely released hydrolytically from PG-G and taken up by MCF-7, MDA-MB-231 and HDF, whereas both released gemcitabine and PG-G were taken up by 4T1 to mediate the observed cytotoxicities. The improved stability and extended sustained release profile may render PG-G a potential anticancer prodrug.
format Article
author Kiew, Lik Voon
Cheong, Soon Keng
Sidik, Khalifah
Chung, Lip Yong
author_facet Kiew, Lik Voon
Cheong, Soon Keng
Sidik, Khalifah
Chung, Lip Yong
author_sort Kiew, Lik Voon
title Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
title_short Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
title_full Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
title_fullStr Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
title_full_unstemmed Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
title_sort improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation
publisher Elsevier
publishDate 2010
url http://eprints.um.edu.my/2642/1/Kiew_LV_2010.pdf
http://eprints.um.edu.my/2642/
https://doi.org/10.1016/j.ijpharm.2010.03.010
_version_ 1651867310164541440
score 13.211869