Water-body segmentation in satellite imagery applying modified Kernel K-means
The main purpose of k-Means clustering is partitioning patterns into various homogeneous clusters by minimizing cluster errors, but the modified solution of k-Means can be recovered with the guidance of Principal Component Analysis (PCA). In this paper, the linear Kernel PCA guides k-Means procedure...
保存先:
主要な著者: | , , , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Faculty of Computer Science and Information Technology, University of Malaya
2018
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/20257/ https://doi.org/10.22452/mjcs.vol31no2.4 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|