Cell Cycle Arrest and Apoptosis Induction via Modulation of Mitochondrial Integrity by Bcl-2 Family Members and Caspase Dependence in Dracaena cinnabari -Treated H400 Human Oral Squamous Cell Carcinoma

Dracaena cinnabari Balf.f. is a red resin endemic to Socotra Island, Yemen. Although there have been several reports on its therapeutic properties, information on its cytotoxicity and anticancer effects is very limited. This study utilized a bioassay-guided fractionation approach to determine the cy...

Full description

Saved in:
Bibliographic Details
Main Authors: Alabsi, A.M., Lim, K.L., Paterson, I.C., Ali-Saeed, R., Muharram, B.A.
Format: Article
Published: Hindawi Publishing Corporation 2016
Subjects:
Online Access:http://eprints.um.edu.my/18182/
http://dx.doi.org/10.1155/2016/4904016
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dracaena cinnabari Balf.f. is a red resin endemic to Socotra Island, Yemen. Although there have been several reports on its therapeutic properties, information on its cytotoxicity and anticancer effects is very limited. This study utilized a bioassay-guided fractionation approach to determine the cytotoxic and apoptosis-inducing effects of D. cinnabari on human oral squamous cell carcinoma (OSCC). The cytotoxic effects of D. cinnabari crude extract were observed in a panel of OSCC cell lines and were most pronounced in H400. Only fractions DCc and DCd were active on H400 cells; subfractions DCc15 and DCd16 exhibited the greatest cytotoxicity against H400 cells and D. cinnabari inhibited cells proliferation in a time-dependent manner. This was achieved primarily via apoptosis where externalization of phospholipid phosphatidylserine was observed using DAPI/Annexin V fluorescence double staining mechanism studied through mitochondrial membrane potential assay cytochrome c enzyme-linked immunosorbent and caspases activities revealed depolarization of mitochondrial membrane potential (MMP) and significant activation of caspases 9 and 3/7, concomitant with S phase arrest. Apoptotic proteins array suggested that MMP was regulated by Bcl-2 proteins family as results demonstrated an upregulation of Bax, Bad, and Bid as well as downregulation of Bcl-2. Hence, D. cinnabari has the potential to be developed as an anticancer agent.