Surface modification of polycaprolactone (PCL) microcarrier for performance improvement of human skin fibroblast cell culture
Polycaprolactone (PCL) has many advantages for use in biomedical engineering field. In the present work PCL microcarriers of 150-200 µm were fabricated using oil-in-water (o/w) emulsification coupled with solvent evaporation method. The surface charge of PCL microcarrier was then been improved by...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English English English |
Published: |
Institute of Physics Publishing
2018
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/59734/6/59734-Surface%20Modification%20of%20Polycaprolactone.pdf http://irep.iium.edu.my/59734/12/59734_Surface%20Modification%20of%20Polycaprolactone%20%28PCL%29.pdf http://irep.iium.edu.my/59734/13/59734_Surface%20Modification%20of%20Polycaprolactone%20%28PCL%29_SCOPUS.pdf http://irep.iium.edu.my/59734/ http://iopscience.iop.org/article/10.1088/1757-899X/290/1/012016 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polycaprolactone (PCL) has many advantages for use in biomedical engineering field. In the present work
PCL microcarriers of 150-200 µm were fabricated using oil-in-water (o/w) emulsification coupled with
solvent evaporation method. The surface charge of PCL microcarrier was then been improved by using
ultraviolet/ozone treatment to introduce oxygen functional group. Immobilisation of gelatin onto PCL
microspheres using zero-length crosslinker provides a stable protein-support complex, with no diffusional
barrier which is ideal for mass processing. The optimum concentration of carboxyl group (COOH)
absorbed on the surface was 1495.9 nmol/g and the amount of gelatin immobilized was 1797.3 µg/g on
UV/O3 treated microcarriers as compared to the untreated (320 µg/g) microcarriers. The absorption of
functional oxygen groups on the surface and the immobilized gelatin was confirmed with the attenuated
total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and the enhancement of
hydrophilicity of the surface was confirmed using water contact angle measurement which decreased
(86.93o – 49.34o) after UV/O3 treatment and subsequently after immobilisation of gelatin. The
attachment and growth kinetics for human skin fibroblast cell (HSFC) showed that adhesion occurred
much more rapidly for gelatin immobilised surface as compared to untreated PCL and UV/O3 PCL
microcarrier. |
---|