An Electromagnetics Water Flooding System With Nanofluid For EOR
The major challenge for oil industry is to increase the recovery of oil from the reservoir. EOR by nanofluids induction has been used in water flooding process. This work deals with a new electromagnetics water flooding system using nanofluid for EOR. A simulation on the density of state (DOS) and b...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | http://utpedia.utp.edu.my/id/eprint/15397/1/Muhammad%20%20Kashif_PhD_%20Thesis.pdf http://utpedia.utp.edu.my/id/eprint/15397/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:utpedia.utp.edu.my:15397 |
---|---|
record_format |
eprints |
spelling |
oai:utpedia.utp.edu.my:153972023-05-15T07:40:00Z http://utpedia.utp.edu.my/id/eprint/15397/ An Electromagnetics Water Flooding System With Nanofluid For EOR KASHIF, MUHAMMAD TK Electrical engineering. Electronics Nuclear engineering The major challenge for oil industry is to increase the recovery of oil from the reservoir. EOR by nanofluids induction has been used in water flooding process. This work deals with a new electromagnetics water flooding system using nanofluid for EOR. A simulation on the density of state (DOS) and band structure of zinc oxide (ZnO) and iron oxide (Fe2O3) was carried out; it was observed that the band gap value for ZnO is 0.808ev and for Fe2O3 is 0.201ev. The percentage difference between the band gap of ZnO and Fe2O3 is 301%. For ZnO, Zn 4s state contributes to conduction band and O 2p state contributes to valence band. For Fe2O3 valence band is a mixture of O 2p state and the majority is Fe 3d state, while the conduction band consists of Fe 3d state. As Fe2O3 has lowest band gap, its dielectric constant is greater than ZnO which has the highest band gap, thus it has the lowest dielectric constant 2014-05 Thesis NonPeerReviewed application/pdf en http://utpedia.utp.edu.my/id/eprint/15397/1/Muhammad%20%20Kashif_PhD_%20Thesis.pdf KASHIF, MUHAMMAD (2014) An Electromagnetics Water Flooding System With Nanofluid For EOR. PhD. thesis, Universiti Teknologi PETRONAS. |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Electronic and Digitized Intellectual Asset |
url_provider |
http://utpedia.utp.edu.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering KASHIF, MUHAMMAD An Electromagnetics Water Flooding System With Nanofluid For EOR |
description |
The major challenge for oil industry is to increase the recovery of oil from the reservoir. EOR by nanofluids induction has been used in water flooding process. This work deals with a new electromagnetics water flooding system using nanofluid for EOR. A simulation on the density of state (DOS) and band structure of zinc oxide (ZnO) and iron oxide (Fe2O3) was carried out; it was observed that the band gap value for ZnO is 0.808ev and for Fe2O3 is 0.201ev. The percentage difference between the band gap of ZnO and Fe2O3 is 301%. For ZnO, Zn 4s state contributes to conduction band and O 2p state contributes to valence band. For Fe2O3 valence band is a mixture of O 2p state and the majority is Fe 3d state, while the conduction band consists of Fe 3d state. As Fe2O3 has lowest band gap, its dielectric constant is greater than ZnO which has the highest band gap, thus it has the lowest dielectric constant |
format |
Thesis |
author |
KASHIF, MUHAMMAD |
author_facet |
KASHIF, MUHAMMAD |
author_sort |
KASHIF, MUHAMMAD |
title |
An Electromagnetics Water Flooding System With Nanofluid For EOR |
title_short |
An Electromagnetics Water Flooding System With Nanofluid For EOR |
title_full |
An Electromagnetics Water Flooding System With Nanofluid For EOR |
title_fullStr |
An Electromagnetics Water Flooding System With Nanofluid For EOR |
title_full_unstemmed |
An Electromagnetics Water Flooding System With Nanofluid For EOR |
title_sort |
electromagnetics water flooding system with nanofluid for eor |
publishDate |
2014 |
url |
http://utpedia.utp.edu.my/id/eprint/15397/1/Muhammad%20%20Kashif_PhD_%20Thesis.pdf http://utpedia.utp.edu.my/id/eprint/15397/ |
_version_ |
1768010110996578304 |
score |
13.214268 |