Microhardness and Process Parameter Optimization of Friction Stir Welding on an AA5052 Thin Plate

The most important advancement in metal joining technique is FSW, which is utilized to weld high strength aluminium alloys. The joining process parameters, including tool rotational speed, travel speed, and axial force, must be tuned in order to increase the dependability and quality of the products...

Full description

Saved in:
Bibliographic Details
Main Authors: Baharudin, B.A., Mustapha, M., Ismail, A., Zulkipli, F.N., Ayob, F., Ahmad, A.
Format: Article
Published: 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37652/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153072918&doi=10.1007%2f978-3-031-21959-7_9&partnerID=40&md5=ee77a50870a2751cfbb98b38beaa4070
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most important advancement in metal joining technique is FSW, which is utilized to weld high strength aluminium alloys. The joining process parameters, including tool rotational speed, travel speed, and axial force, must be tuned in order to increase the dependability and quality of the products produced by the FSW process. The process parameters for the FSW are optimized in this work using the Taguchi design of experiment (DOE) approach. The findings of the study and determination of the optimal condition using L9 orthogonal arrays of Taguchi were subjected to S/N analysis and analysis of variance (ANOVA) to identify the major welding factors impacting the weld quality. The relevant parameters for each welding performance criterion, such as the microhardness, were identified using ANOVA. According to the results, the optimum settings are tool rotation speed of 350 rpm, welding speed of 550 mm/min, and axial load of 900 kg. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.