Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants

Money laundering represents a significant global threat, necessitating the vigilance of professional accountants in detecting and reporting suspicious customer activities within their jurisdiction to the relevant authorities. Despite the legal obligation to comply with anti-money laundering regulati...

Full description

Saved in:
Bibliographic Details
Main Authors: Masrom, S., Tarmizi, M.A., Halid, S., Rahman, R.A., Abd Rahman, A.S., Ibrahim, R.
Format: Article
Published: 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37609/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168963282&doi=10.21833%2fijaas.2023.07.007&partnerID=40&md5=82cfa52483069e52edc2fedf6897bc56
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:37609
record_format eprints
spelling oai:scholars.utp.edu.my:376092023-10-13T13:04:55Z http://scholars.utp.edu.my/id/eprint/37609/ Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants Masrom, S. Tarmizi, M.A. Halid, S. Rahman, R.A. Abd Rahman, A.S. Ibrahim, R. Money laundering represents a significant global threat, necessitating the vigilance of professional accountants in detecting and reporting suspicious customer activities within their jurisdiction to the relevant authorities. Despite the legal obligation to comply with anti-money laundering regulations, professional accountants' adherence to these measures remains insufficient. Previous research on machine learning techniques for combating money laundering has predominantly concentrated on predicting suspicious transactions, rather than evaluating compliance behavior. This study aims to develop a machine learning prediction model to assess the inclination of professional accountants towards adhering to anti-money laundering regulations, serving as an early signal system to gauge their willingness to abide by the law in their professional responsibilities. The research elaborates on the design and implementation of machine learning models based on three algorithms: Decision Tree, Gradient Boosted Tree, and Support Vector Machine. The paper offers two types of comparisons from distinct perspectives: firstly, the performance of each algorithm in predicting real cases of anti-money laundering compliance, and secondly, the contribution of attributes measured by weights of correlation in different algorithms. Alongside demographic factors, the study evaluates the effectiveness of each algorithm in anti-money laundering compliance by utilizing five attributes derived from the Protection Motivation Theory (PMT). The findings demonstrate the significance of all attributes, including demography and PMT, in all machine learning models, with both Gradient Boosted Tree and Support Vector Machine achieving a proportion of variance of 0.8 or higher. This indicates the potential of these algorithms in effectively measuring and predicting professional accountants' intentions to comply with anti-money laundering regulations. © 2023 The Authors. Published by IASE. 2023 Article NonPeerReviewed Masrom, S. and Tarmizi, M.A. and Halid, S. and Rahman, R.A. and Abd Rahman, A.S. and Ibrahim, R. (2023) Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants. International Journal of Advanced and Applied Sciences, 10 (7). pp. 48-53. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168963282&doi=10.21833%2fijaas.2023.07.007&partnerID=40&md5=82cfa52483069e52edc2fedf6897bc56 10.21833/ijaas.2023.07.007 10.21833/ijaas.2023.07.007 10.21833/ijaas.2023.07.007
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Money laundering represents a significant global threat, necessitating the vigilance of professional accountants in detecting and reporting suspicious customer activities within their jurisdiction to the relevant authorities. Despite the legal obligation to comply with anti-money laundering regulations, professional accountants' adherence to these measures remains insufficient. Previous research on machine learning techniques for combating money laundering has predominantly concentrated on predicting suspicious transactions, rather than evaluating compliance behavior. This study aims to develop a machine learning prediction model to assess the inclination of professional accountants towards adhering to anti-money laundering regulations, serving as an early signal system to gauge their willingness to abide by the law in their professional responsibilities. The research elaborates on the design and implementation of machine learning models based on three algorithms: Decision Tree, Gradient Boosted Tree, and Support Vector Machine. The paper offers two types of comparisons from distinct perspectives: firstly, the performance of each algorithm in predicting real cases of anti-money laundering compliance, and secondly, the contribution of attributes measured by weights of correlation in different algorithms. Alongside demographic factors, the study evaluates the effectiveness of each algorithm in anti-money laundering compliance by utilizing five attributes derived from the Protection Motivation Theory (PMT). The findings demonstrate the significance of all attributes, including demography and PMT, in all machine learning models, with both Gradient Boosted Tree and Support Vector Machine achieving a proportion of variance of 0.8 or higher. This indicates the potential of these algorithms in effectively measuring and predicting professional accountants' intentions to comply with anti-money laundering regulations. © 2023 The Authors. Published by IASE.
format Article
author Masrom, S.
Tarmizi, M.A.
Halid, S.
Rahman, R.A.
Abd Rahman, A.S.
Ibrahim, R.
spellingShingle Masrom, S.
Tarmizi, M.A.
Halid, S.
Rahman, R.A.
Abd Rahman, A.S.
Ibrahim, R.
Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
author_facet Masrom, S.
Tarmizi, M.A.
Halid, S.
Rahman, R.A.
Abd Rahman, A.S.
Ibrahim, R.
author_sort Masrom, S.
title Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
title_short Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
title_full Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
title_fullStr Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
title_full_unstemmed Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
title_sort machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37609/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168963282&doi=10.21833%2fijaas.2023.07.007&partnerID=40&md5=82cfa52483069e52edc2fedf6897bc56
_version_ 1781707931800043520
score 13.214268