A decision tree model for accurate prediction of sand erosion in elbow geometry
Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been app...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2023
|
Online Access: | http://scholars.utp.edu.my/id/eprint/37510/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163417889&doi=10.1016%2fj.heliyon.2023.e17639&partnerID=40&md5=c91dc0fa95b56115595cb128be7c8406 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scholars.utp.edu.my:37510 |
---|---|
record_format |
eprints |
spelling |
oai:scholars.utp.edu.my:375102023-10-04T13:30:26Z http://scholars.utp.edu.my/id/eprint/37510/ A decision tree model for accurate prediction of sand erosion in elbow geometry Alakbari, F.S. Mohyaldinn, M.E. Ayoub, M.A. Salih, A.A. Abbas, A.H. Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been applied to determine the ER of the sand in the literature. However, these models have been created based on specific data to require a model for application to wide-range data. Moreover, the previous models have not studied relationships between independent and dependent variables. Thus, this research aims to use machine learning techniques, namely linear regression and decision tree (DT), to predict the ER robustly. The optimum model, the DT model, was evaluated using various trend analysis and statistical error analyses (SEA) techniques, namely the correlation coefficient (R). The evaluation results proved proper physical behavior for all independent variables, along with high accuracy and the DT model robustness. The proposed DT method can accurately predict the ER with R of 0.9975, 0.9911, 0.9761, and 0.9908, AAPRE of 5.0, 6.27, 6.26, and 5.5, RMSE of 2.492E-05, 6.189E-05, 9.310E-05, and 5.339E-05, and STD of 13.44, 6.66, 8.01, and 11.44 for the training, validation, testing, and whole datasets, respectively. Hence, this study delivers an effective, robust, accurate, and fast prediction tool for ER determination, significantly saving the petroleum industry's cost and time. © 2023 Elsevier Ltd 2023 Article NonPeerReviewed Alakbari, F.S. and Mohyaldinn, M.E. and Ayoub, M.A. and Salih, A.A. and Abbas, A.H. (2023) A decision tree model for accurate prediction of sand erosion in elbow geometry. Heliyon, 9 (7). ISSN 24058440 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163417889&doi=10.1016%2fj.heliyon.2023.e17639&partnerID=40&md5=c91dc0fa95b56115595cb128be7c8406 10.1016/j.heliyon.2023.e17639 10.1016/j.heliyon.2023.e17639 10.1016/j.heliyon.2023.e17639 |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been applied to determine the ER of the sand in the literature. However, these models have been created based on specific data to require a model for application to wide-range data. Moreover, the previous models have not studied relationships between independent and dependent variables. Thus, this research aims to use machine learning techniques, namely linear regression and decision tree (DT), to predict the ER robustly. The optimum model, the DT model, was evaluated using various trend analysis and statistical error analyses (SEA) techniques, namely the correlation coefficient (R). The evaluation results proved proper physical behavior for all independent variables, along with high accuracy and the DT model robustness. The proposed DT method can accurately predict the ER with R of 0.9975, 0.9911, 0.9761, and 0.9908, AAPRE of 5.0, 6.27, 6.26, and 5.5, RMSE of 2.492E-05, 6.189E-05, 9.310E-05, and 5.339E-05, and STD of 13.44, 6.66, 8.01, and 11.44 for the training, validation, testing, and whole datasets, respectively. Hence, this study delivers an effective, robust, accurate, and fast prediction tool for ER determination, significantly saving the petroleum industry's cost and time. © 2023 |
format |
Article |
author |
Alakbari, F.S. Mohyaldinn, M.E. Ayoub, M.A. Salih, A.A. Abbas, A.H. |
spellingShingle |
Alakbari, F.S. Mohyaldinn, M.E. Ayoub, M.A. Salih, A.A. Abbas, A.H. A decision tree model for accurate prediction of sand erosion in elbow geometry |
author_facet |
Alakbari, F.S. Mohyaldinn, M.E. Ayoub, M.A. Salih, A.A. Abbas, A.H. |
author_sort |
Alakbari, F.S. |
title |
A decision tree model for accurate prediction of sand erosion in elbow geometry |
title_short |
A decision tree model for accurate prediction of sand erosion in elbow geometry |
title_full |
A decision tree model for accurate prediction of sand erosion in elbow geometry |
title_fullStr |
A decision tree model for accurate prediction of sand erosion in elbow geometry |
title_full_unstemmed |
A decision tree model for accurate prediction of sand erosion in elbow geometry |
title_sort |
decision tree model for accurate prediction of sand erosion in elbow geometry |
publisher |
Elsevier Ltd |
publishDate |
2023 |
url |
http://scholars.utp.edu.my/id/eprint/37510/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163417889&doi=10.1016%2fj.heliyon.2023.e17639&partnerID=40&md5=c91dc0fa95b56115595cb128be7c8406 |
_version_ |
1779441394601951232 |
score |
13.223943 |