Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks
The quest for energy and environmental sustainability necessitates an increasing interest in the photocatalytic conversion of wastewater to biohydrogen. However, the complexity of the photocatalytic conversion and the low productivity of the biohydrogen produced has become a major concern in the sca...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2023
|
Online Access: | http://scholars.utp.edu.my/id/eprint/37484/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149689334&doi=10.1016%2fj.fuel.2023.128026&partnerID=40&md5=93378a339460cc1835b51c3f2d638ef9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scholars.utp.edu.my:37484 |
---|---|
record_format |
eprints |
spelling |
oai:scholars.utp.edu.my:374842023-10-04T13:19:19Z http://scholars.utp.edu.my/id/eprint/37484/ Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks Kanthasamy, R. Ali, I. Ayodele, B.V. Maddah, H.A. The quest for energy and environmental sustainability necessitates an increasing interest in the photocatalytic conversion of wastewater to biohydrogen. However, the complexity of the photocatalytic conversion and the low productivity of the biohydrogen produced has become a major concern in the scale-up of the process. This study employs a data-driven approach to model biohydrogen production from the photocatalytic conversion of wastewater. Having ascertained the influence of five different parameters namely catalyst size, reaction temperature, catalyst among, irradiation time, and radiation intensity on the biohydrogen production through parametric analysis, the data were employed to model the process using multilayer perceptron neural network (MLPNN) and nonlinear autoregressive neural network (NARX). Both the MLPNN and NARX models were trained using Levenberg-Marquardt (LM), Bayesian regularization (BR), and scaled conjugate gradient (SCG) algorithms. The performance of 20 network architectures was tested for MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and NARX-SCG. The analysis revealed that the best network architectures of 5-14-1, 5-11-1, 5-7-1, 5-14-1, 5-15-1, and 5-7-1 were obtained for the MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and NARX-SCG, respectively. All the models demonstrated a good predictability of the biohydrogen production as evidenced by the coefficient of determination (R2) > 0.9 and low root mean square error (RMSE) values. The best performance was displayed by MLPNN-BR model with R2 of 0.999 and RMSE of 0.138. The independent variable analysis shows that all the factors significantly influence the predicted biohydrogen production. The catalyst size has the most significant effect on the predicted hydrogen production as indicated by the importance value of 0.329. © 2023 Elsevier Ltd Elsevier Ltd 2023 Article NonPeerReviewed Kanthasamy, R. and Ali, I. and Ayodele, B.V. and Maddah, H.A. (2023) Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks. Fuel, 344. ISSN 00162361 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149689334&doi=10.1016%2fj.fuel.2023.128026&partnerID=40&md5=93378a339460cc1835b51c3f2d638ef9 10.1016/j.fuel.2023.128026 10.1016/j.fuel.2023.128026 10.1016/j.fuel.2023.128026 |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The quest for energy and environmental sustainability necessitates an increasing interest in the photocatalytic conversion of wastewater to biohydrogen. However, the complexity of the photocatalytic conversion and the low productivity of the biohydrogen produced has become a major concern in the scale-up of the process. This study employs a data-driven approach to model biohydrogen production from the photocatalytic conversion of wastewater. Having ascertained the influence of five different parameters namely catalyst size, reaction temperature, catalyst among, irradiation time, and radiation intensity on the biohydrogen production through parametric analysis, the data were employed to model the process using multilayer perceptron neural network (MLPNN) and nonlinear autoregressive neural network (NARX). Both the MLPNN and NARX models were trained using Levenberg-Marquardt (LM), Bayesian regularization (BR), and scaled conjugate gradient (SCG) algorithms. The performance of 20 network architectures was tested for MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and NARX-SCG. The analysis revealed that the best network architectures of 5-14-1, 5-11-1, 5-7-1, 5-14-1, 5-15-1, and 5-7-1 were obtained for the MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and NARX-SCG, respectively. All the models demonstrated a good predictability of the biohydrogen production as evidenced by the coefficient of determination (R2) > 0.9 and low root mean square error (RMSE) values. The best performance was displayed by MLPNN-BR model with R2 of 0.999 and RMSE of 0.138. The independent variable analysis shows that all the factors significantly influence the predicted biohydrogen production. The catalyst size has the most significant effect on the predicted hydrogen production as indicated by the importance value of 0.329. © 2023 Elsevier Ltd |
format |
Article |
author |
Kanthasamy, R. Ali, I. Ayodele, B.V. Maddah, H.A. |
spellingShingle |
Kanthasamy, R. Ali, I. Ayodele, B.V. Maddah, H.A. Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
author_facet |
Kanthasamy, R. Ali, I. Ayodele, B.V. Maddah, H.A. |
author_sort |
Kanthasamy, R. |
title |
Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
title_short |
Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
title_full |
Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
title_fullStr |
Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
title_full_unstemmed |
Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
title_sort |
bio-hydrogen production from the photocatalytic conversion of wastewater: parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks |
publisher |
Elsevier Ltd |
publishDate |
2023 |
url |
http://scholars.utp.edu.my/id/eprint/37484/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149689334&doi=10.1016%2fj.fuel.2023.128026&partnerID=40&md5=93378a339460cc1835b51c3f2d638ef9 |
_version_ |
1779441390529282048 |
score |
13.214268 |