A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery

Two-phase Darcy�s law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected nanofluids...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Yaari, A., Ling Chuan Ching, D., Sakidin, H., Sundaram Muthuvalu, M., Zafar, M., Haruna, A., Merican Aljunid Merican, Z., Azad, A.S.
Format: Article
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37447/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167829696&doi=10.3390%2fma16155414&partnerID=40&md5=41bd715075011623d6f214581ab56c3c
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:37447
record_format eprints
spelling oai:scholars.utp.edu.my:374472023-10-04T13:11:05Z http://scholars.utp.edu.my/id/eprint/37447/ A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery Al-Yaari, A. Ling Chuan Ching, D. Sakidin, H. Sundaram Muthuvalu, M. Zafar, M. Haruna, A. Merican Aljunid Merican, Z. Azad, A.S. Two-phase Darcy�s law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected nanofluids (NFs). Among them, numerical modeling is attracting the attention of scientists and engineers owing to its ability to modify the thermophysical properties of NFs such as density, viscosity, and thermal conductivity. Herein, a new model for simulating NF injection into a 3D porous media for enhanced oil recovery (EOR) is investigated. This model has been developed for its ability to predict oil recovery across a wide range of temperatures and volume fractions (VFs). For the first time, the model can examine the changes and effects of thermophysical properties on the EOR process based on empirical correlations depending on two variables, VF and inlet temperature. The governing equations obtained from Darcy�s law, mass conservation, concentration, and energy equations were numerically evaluated using a time-dependent finite-element method. The findings indicated that optimizing the temperature and VF could significantly improve the thermophysical properties of the EOR process. We observed that increasing the inlet temperature (353.15 K) and volume fraction (4) resulted in better oil displacement, improved sweep efficiency, and enhanced mobility of the NF. The oil recovery decreased when the VF (>4) and temperature exceeded 353.15 K. Remarkably, the optimal VF and inlet temperature for changing the thermophysical properties increased the oil production by 30. © 2023 by the authors. Multidisciplinary Digital Publishing Institute (MDPI) 2023 Article NonPeerReviewed Al-Yaari, A. and Ling Chuan Ching, D. and Sakidin, H. and Sundaram Muthuvalu, M. and Zafar, M. and Haruna, A. and Merican Aljunid Merican, Z. and Azad, A.S. (2023) A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery. Materials, 16 (15). ISSN 19961944 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167829696&doi=10.3390%2fma16155414&partnerID=40&md5=41bd715075011623d6f214581ab56c3c 10.3390/ma16155414 10.3390/ma16155414 10.3390/ma16155414
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Two-phase Darcy�s law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected nanofluids (NFs). Among them, numerical modeling is attracting the attention of scientists and engineers owing to its ability to modify the thermophysical properties of NFs such as density, viscosity, and thermal conductivity. Herein, a new model for simulating NF injection into a 3D porous media for enhanced oil recovery (EOR) is investigated. This model has been developed for its ability to predict oil recovery across a wide range of temperatures and volume fractions (VFs). For the first time, the model can examine the changes and effects of thermophysical properties on the EOR process based on empirical correlations depending on two variables, VF and inlet temperature. The governing equations obtained from Darcy�s law, mass conservation, concentration, and energy equations were numerically evaluated using a time-dependent finite-element method. The findings indicated that optimizing the temperature and VF could significantly improve the thermophysical properties of the EOR process. We observed that increasing the inlet temperature (353.15 K) and volume fraction (4) resulted in better oil displacement, improved sweep efficiency, and enhanced mobility of the NF. The oil recovery decreased when the VF (>4) and temperature exceeded 353.15 K. Remarkably, the optimal VF and inlet temperature for changing the thermophysical properties increased the oil production by 30. © 2023 by the authors.
format Article
author Al-Yaari, A.
Ling Chuan Ching, D.
Sakidin, H.
Sundaram Muthuvalu, M.
Zafar, M.
Haruna, A.
Merican Aljunid Merican, Z.
Azad, A.S.
spellingShingle Al-Yaari, A.
Ling Chuan Ching, D.
Sakidin, H.
Sundaram Muthuvalu, M.
Zafar, M.
Haruna, A.
Merican Aljunid Merican, Z.
Azad, A.S.
A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
author_facet Al-Yaari, A.
Ling Chuan Ching, D.
Sakidin, H.
Sundaram Muthuvalu, M.
Zafar, M.
Haruna, A.
Merican Aljunid Merican, Z.
Azad, A.S.
author_sort Al-Yaari, A.
title A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
title_short A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
title_full A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
title_fullStr A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
title_full_unstemmed A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
title_sort new 3d mathematical model for simulating nanofluid flooding in a porous medium for enhanced oil recovery
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37447/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167829696&doi=10.3390%2fma16155414&partnerID=40&md5=41bd715075011623d6f214581ab56c3c
_version_ 1779441384367849472
score 13.223943