Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation

Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel appro...

Full description

Saved in:
Bibliographic Details
Main Authors: Haider, S., Nawaz, R., Anjum, M., Haneef, T., Oad, V.K., Uddinkhan, S., Khan, R., Aqif, M.
Format: Article
Published: Higher Education Press Limited Company 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37395/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154565485&doi=10.1007%2fs11783-023-1711-3&partnerID=40&md5=a7ff618e2b50ba10172feaa41b9a0950
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30 of PHCs were removed after 180 min, compared to only 21.95 for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost 2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater. Figure not available: see fulltext. © 2023, Higher Education Press.