Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes

Biochar and syngas are important products of pyrolysis that can be employed for a wide range of applications such as catalysts for biodiesel production, wastewater treatment, and the production of oxygenated fuel. This study employs Bayesian optimized multilayer perceptron neural network for modelli...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanthasamy, R., Almatrafi, E., Ali, I., Hussain Sait, H., Zwawi, M., Abnisa, F., Choe Peng, L., Victor Ayodele, B.
Format: Article
Published: Elsevier Ltd 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37310/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161345516&doi=10.1016%2fj.fuel.2023.128832&partnerID=40&md5=af419a089350a25d07b5384547b1e9c8
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:37310
record_format eprints
spelling oai:scholars.utp.edu.my:373102023-10-04T08:38:05Z http://scholars.utp.edu.my/id/eprint/37310/ Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes Kanthasamy, R. Almatrafi, E. Ali, I. Hussain Sait, H. Zwawi, M. Abnisa, F. Choe Peng, L. Victor Ayodele, B. Biochar and syngas are important products of pyrolysis that can be employed for a wide range of applications such as catalysts for biodiesel production, wastewater treatment, and the production of oxygenated fuel. This study employs Bayesian optimized multilayer perceptron neural network for modelling the prediction of biochar and syngas from pyrolysis of biomass-derived wastes. Sixty neural networks were configured by considering the effect of hyperparameters such as the connecting layers of the network, the size of the network, and the type of neural network algorithms. The feature analysis using F-test algorithms revealed that temperature, biomass composition, N2 flow rates, residence time, and bed height influence the biochar and syngas yield obtained from the pyrolysis process. There is a significant interaction effect between the features as shown by the parametric analysis. The performance of the neural networks was significantly influenced by the number of connecting layers and the size of the hidden neurons. The five-layer neural network with an architecture of 3�2-10�10-1 displayed the best performance in predicting the biochar yield obtained from the pyrolysis process as indicated by R2 of 0.984, and RMSE of 0.34. While the five-layer neural network with an architecture of 3�7-10�3-1 displayed the best performance in predicting the syngas yield from the pyrolysis process as indicated by R2 of 0.999. © 2023 Elsevier Ltd Elsevier Ltd 2023 Article NonPeerReviewed Kanthasamy, R. and Almatrafi, E. and Ali, I. and Hussain Sait, H. and Zwawi, M. and Abnisa, F. and Choe Peng, L. and Victor Ayodele, B. (2023) Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes. Fuel, 350. ISSN 00162361 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161345516&doi=10.1016%2fj.fuel.2023.128832&partnerID=40&md5=af419a089350a25d07b5384547b1e9c8 10.1016/j.fuel.2023.128832 10.1016/j.fuel.2023.128832 10.1016/j.fuel.2023.128832
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Biochar and syngas are important products of pyrolysis that can be employed for a wide range of applications such as catalysts for biodiesel production, wastewater treatment, and the production of oxygenated fuel. This study employs Bayesian optimized multilayer perceptron neural network for modelling the prediction of biochar and syngas from pyrolysis of biomass-derived wastes. Sixty neural networks were configured by considering the effect of hyperparameters such as the connecting layers of the network, the size of the network, and the type of neural network algorithms. The feature analysis using F-test algorithms revealed that temperature, biomass composition, N2 flow rates, residence time, and bed height influence the biochar and syngas yield obtained from the pyrolysis process. There is a significant interaction effect between the features as shown by the parametric analysis. The performance of the neural networks was significantly influenced by the number of connecting layers and the size of the hidden neurons. The five-layer neural network with an architecture of 3�2-10�10-1 displayed the best performance in predicting the biochar yield obtained from the pyrolysis process as indicated by R2 of 0.984, and RMSE of 0.34. While the five-layer neural network with an architecture of 3�7-10�3-1 displayed the best performance in predicting the syngas yield from the pyrolysis process as indicated by R2 of 0.999. © 2023 Elsevier Ltd
format Article
author Kanthasamy, R.
Almatrafi, E.
Ali, I.
Hussain Sait, H.
Zwawi, M.
Abnisa, F.
Choe Peng, L.
Victor Ayodele, B.
spellingShingle Kanthasamy, R.
Almatrafi, E.
Ali, I.
Hussain Sait, H.
Zwawi, M.
Abnisa, F.
Choe Peng, L.
Victor Ayodele, B.
Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
author_facet Kanthasamy, R.
Almatrafi, E.
Ali, I.
Hussain Sait, H.
Zwawi, M.
Abnisa, F.
Choe Peng, L.
Victor Ayodele, B.
author_sort Kanthasamy, R.
title Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
title_short Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
title_full Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
title_fullStr Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
title_full_unstemmed Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
title_sort bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes
publisher Elsevier Ltd
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37310/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161345516&doi=10.1016%2fj.fuel.2023.128832&partnerID=40&md5=af419a089350a25d07b5384547b1e9c8
_version_ 1779441363665813504
score 13.223943