Ionic liquids-assisted electrolytes in aqueous zinc ion batteries

In the quest for safer and low-cost batteries, zinc ion batteries have remarkable potential in various energy storage applications. However, selecting suitable electrolytes for zinc electrochemistry is challenging due to zinc's passivation and dendritic growth hindering long-term stability. Mor...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad, M.I., Bahtiyar, D., Khan, H.W., Shah, M.U.H., Kiran, L., Aydinol, M.K., Yusuf, M., Kamyab, H., Rezania, S.
Format: Article
Published: Elsevier Ltd 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37286/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168805748&doi=10.1016%2fj.est.2023.108765&partnerID=40&md5=ddd5b4e07d5caf15ffd15542b83f98a6
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:37286
record_format eprints
spelling oai:scholars.utp.edu.my:372862023-10-04T08:37:03Z http://scholars.utp.edu.my/id/eprint/37286/ Ionic liquids-assisted electrolytes in aqueous zinc ion batteries Ahmad, M.I. Bahtiyar, D. Khan, H.W. Shah, M.U.H. Kiran, L. Aydinol, M.K. Yusuf, M. Kamyab, H. Rezania, S. In the quest for safer and low-cost batteries, zinc ion batteries have remarkable potential in various energy storage applications. However, selecting suitable electrolytes for zinc electrochemistry is challenging due to zinc's passivation and dendritic growth hindering long-term stability. Moreover, the synergy between newly developed electrode materials and electrolytes remains challenging for commercial applications. Therefore, in this study fifty (50) combinations of ionic liquids (ILs) were screened using COSMO-RS simulation to identify suitable ILs for aqueous electrolytes with ZnSO4 salt by comparing activity coefficients at infinite dilution, selectivity, and capacity of ILs to dissolve ZnSO4 salt in the aqueous phase. Further, calcium vanadate (CaV2O6) was synthesized using a modified molten salt method and characterized using a Scanning Electron Microscope and X-ray diffraction to confirm its successful synthesis. Afterwards, the performance of calcium vanadate in aqueous zinc batteries having ILs-assisted electrolytes were also evaluated and compared with conventional electrolyte (aqueous 1 M ZnSO4). Results revealed that ILs based on tetramethyl ammonium cation were suitable for electrolyte applications with ZnSO4 salt. Furthermore, Tetramethylammonium hydrogen sulfate was compared with conventional ZnSO4 electrolyte and an initial discharge capacity of 330 mAh/g for calcium vanadate electrode with ILs-assisted electrolyte was observed as compared to 230 mAh/g with 1 M ZnSO4 aqueous electrolyte. Electrochemical impedance spectroscopy (EIS) measurements showed that ILs-assisted electrolyte's charge transfer and surface film resistance were lower than the conventional electrolyte. However, additional advancement in electrode and electrolytes, i.e. synthesis of electrode materials, and formulation of ILs-assisted electrolytes, may further improve the performance of aqueous zinc ion batteries. © 2023 Elsevier Ltd Elsevier Ltd 2023 Article NonPeerReviewed Ahmad, M.I. and Bahtiyar, D. and Khan, H.W. and Shah, M.U.H. and Kiran, L. and Aydinol, M.K. and Yusuf, M. and Kamyab, H. and Rezania, S. (2023) Ionic liquids-assisted electrolytes in aqueous zinc ion batteries. Journal of Energy Storage, 72. ISSN 2352152X https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168805748&doi=10.1016%2fj.est.2023.108765&partnerID=40&md5=ddd5b4e07d5caf15ffd15542b83f98a6 10.1016/j.est.2023.108765 10.1016/j.est.2023.108765 10.1016/j.est.2023.108765
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description In the quest for safer and low-cost batteries, zinc ion batteries have remarkable potential in various energy storage applications. However, selecting suitable electrolytes for zinc electrochemistry is challenging due to zinc's passivation and dendritic growth hindering long-term stability. Moreover, the synergy between newly developed electrode materials and electrolytes remains challenging for commercial applications. Therefore, in this study fifty (50) combinations of ionic liquids (ILs) were screened using COSMO-RS simulation to identify suitable ILs for aqueous electrolytes with ZnSO4 salt by comparing activity coefficients at infinite dilution, selectivity, and capacity of ILs to dissolve ZnSO4 salt in the aqueous phase. Further, calcium vanadate (CaV2O6) was synthesized using a modified molten salt method and characterized using a Scanning Electron Microscope and X-ray diffraction to confirm its successful synthesis. Afterwards, the performance of calcium vanadate in aqueous zinc batteries having ILs-assisted electrolytes were also evaluated and compared with conventional electrolyte (aqueous 1 M ZnSO4). Results revealed that ILs based on tetramethyl ammonium cation were suitable for electrolyte applications with ZnSO4 salt. Furthermore, Tetramethylammonium hydrogen sulfate was compared with conventional ZnSO4 electrolyte and an initial discharge capacity of 330 mAh/g for calcium vanadate electrode with ILs-assisted electrolyte was observed as compared to 230 mAh/g with 1 M ZnSO4 aqueous electrolyte. Electrochemical impedance spectroscopy (EIS) measurements showed that ILs-assisted electrolyte's charge transfer and surface film resistance were lower than the conventional electrolyte. However, additional advancement in electrode and electrolytes, i.e. synthesis of electrode materials, and formulation of ILs-assisted electrolytes, may further improve the performance of aqueous zinc ion batteries. © 2023 Elsevier Ltd
format Article
author Ahmad, M.I.
Bahtiyar, D.
Khan, H.W.
Shah, M.U.H.
Kiran, L.
Aydinol, M.K.
Yusuf, M.
Kamyab, H.
Rezania, S.
spellingShingle Ahmad, M.I.
Bahtiyar, D.
Khan, H.W.
Shah, M.U.H.
Kiran, L.
Aydinol, M.K.
Yusuf, M.
Kamyab, H.
Rezania, S.
Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
author_facet Ahmad, M.I.
Bahtiyar, D.
Khan, H.W.
Shah, M.U.H.
Kiran, L.
Aydinol, M.K.
Yusuf, M.
Kamyab, H.
Rezania, S.
author_sort Ahmad, M.I.
title Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
title_short Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
title_full Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
title_fullStr Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
title_full_unstemmed Ionic liquids-assisted electrolytes in aqueous zinc ion batteries
title_sort ionic liquids-assisted electrolytes in aqueous zinc ion batteries
publisher Elsevier Ltd
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37286/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168805748&doi=10.1016%2fj.est.2023.108765&partnerID=40&md5=ddd5b4e07d5caf15ffd15542b83f98a6
_version_ 1779441360029351936
score 13.223943