Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs

A viable CO2 storage resource must have sufficient storage capacity, reliable containment efficiency and adequate well injectivity. Deep saline formations stand out in terms of storage capacity and containment efficiency. However, formation brine dry-out and salt precipitation in the near well regio...

Full description

Saved in:
Bibliographic Details
Main Authors: Sokama-Neuyam, Y.A., Yusof, M.A.M., Owusu, S.K., Darkwah-Owusu, V., Turkson, J.N., Otchere, A.S., Ursin, J.R.
Format: Article
Published: Nature Research 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37283/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161066668&doi=10.1038%2fs41598-023-36419-3&partnerID=40&md5=4704c5dabfcf4d4481a42b8f157d3522
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:37283
record_format eprints
spelling oai:scholars.utp.edu.my:372832023-10-04T08:36:52Z http://scholars.utp.edu.my/id/eprint/37283/ Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs Sokama-Neuyam, Y.A. Yusof, M.A.M. Owusu, S.K. Darkwah-Owusu, V. Turkson, J.N. Otchere, A.S. Ursin, J.R. A viable CO2 storage resource must have sufficient storage capacity, reliable containment efficiency and adequate well injectivity. Deep saline formations stand out in terms of storage capacity and containment efficiency. However, formation brine dry-out and salt precipitation in the near well region could impair CO2 injectivity in deep saline reservoirs, thus reducing their potential for CO2 storage. Core-flood experiments and analytical modelling were used to investigate various mechanisms of external and internal salt precipitation. Particularly, the impact of the extension of the dry-out region on CO2 injectivity was investigated. It was found that, for high permeability rocks, injection of CO2 at relatively low injection rates could result in salt cake deposition at the injection inlet especially under high salinity conditions. It was also found that extension of the dry-out region does not have significant impact on CO2 injectivity. Although the magnitude of CO2 injectivity impairment increased more than two-fold when initial brine salinity was doubled, real-time changes in CO2 injectivity during the drying process was found to be independent of initial brine salinity. We have shown that the bundle-of-tubes model could provide useful insight into the process of brine vaporization and salt deposition in the dry-out region during CO2 injection. This work provides vital understanding of the effect of salt precipitation on CO2 injectivity. © 2023, The Author(s). Nature Research 2023 Article NonPeerReviewed Sokama-Neuyam, Y.A. and Yusof, M.A.M. and Owusu, S.K. and Darkwah-Owusu, V. and Turkson, J.N. and Otchere, A.S. and Ursin, J.R. (2023) Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs. Scientific Reports, 13 (1). ISSN 20452322 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161066668&doi=10.1038%2fs41598-023-36419-3&partnerID=40&md5=4704c5dabfcf4d4481a42b8f157d3522 10.1038/s41598-023-36419-3 10.1038/s41598-023-36419-3 10.1038/s41598-023-36419-3
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description A viable CO2 storage resource must have sufficient storage capacity, reliable containment efficiency and adequate well injectivity. Deep saline formations stand out in terms of storage capacity and containment efficiency. However, formation brine dry-out and salt precipitation in the near well region could impair CO2 injectivity in deep saline reservoirs, thus reducing their potential for CO2 storage. Core-flood experiments and analytical modelling were used to investigate various mechanisms of external and internal salt precipitation. Particularly, the impact of the extension of the dry-out region on CO2 injectivity was investigated. It was found that, for high permeability rocks, injection of CO2 at relatively low injection rates could result in salt cake deposition at the injection inlet especially under high salinity conditions. It was also found that extension of the dry-out region does not have significant impact on CO2 injectivity. Although the magnitude of CO2 injectivity impairment increased more than two-fold when initial brine salinity was doubled, real-time changes in CO2 injectivity during the drying process was found to be independent of initial brine salinity. We have shown that the bundle-of-tubes model could provide useful insight into the process of brine vaporization and salt deposition in the dry-out region during CO2 injection. This work provides vital understanding of the effect of salt precipitation on CO2 injectivity. © 2023, The Author(s).
format Article
author Sokama-Neuyam, Y.A.
Yusof, M.A.M.
Owusu, S.K.
Darkwah-Owusu, V.
Turkson, J.N.
Otchere, A.S.
Ursin, J.R.
spellingShingle Sokama-Neuyam, Y.A.
Yusof, M.A.M.
Owusu, S.K.
Darkwah-Owusu, V.
Turkson, J.N.
Otchere, A.S.
Ursin, J.R.
Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
author_facet Sokama-Neuyam, Y.A.
Yusof, M.A.M.
Owusu, S.K.
Darkwah-Owusu, V.
Turkson, J.N.
Otchere, A.S.
Ursin, J.R.
author_sort Sokama-Neuyam, Y.A.
title Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
title_short Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
title_full Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
title_fullStr Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
title_full_unstemmed Experimental and theoretical investigation of the mechanisms of drying during CO2 injection into saline reservoirs
title_sort experimental and theoretical investigation of the mechanisms of drying during co2 injection into saline reservoirs
publisher Nature Research
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37283/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161066668&doi=10.1038%2fs41598-023-36419-3&partnerID=40&md5=4704c5dabfcf4d4481a42b8f157d3522
_version_ 1779441359605727232
score 13.223943