Classification of sd-oct images using a deep learning approach

Saved in:
Bibliographic Details
Main Authors: Awais, Muhammad, Müller, Henning, Tang, Tong B, Meriaudeau, Fabrice
Format: Conference or Workshop Item
Published: 2017
Online Access:http://scholars.utp.edu.my/id/eprint/36530/
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:36530
record_format eprints
spelling oai:scholars.utp.edu.my:365302023-06-19T04:16:58Z http://scholars.utp.edu.my/id/eprint/36530/ Classification of sd-oct images using a deep learning approach Awais, Muhammad Müller, Henning Tang, Tong B Meriaudeau, Fabrice 2017 Conference or Workshop Item NonPeerReviewed Awais, Muhammad and Müller, Henning and Tang, Tong B and Meriaudeau, Fabrice (2017) Classification of sd-oct images using a deep learning approach. In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
format Conference or Workshop Item
author Awais, Muhammad
Müller, Henning
Tang, Tong B
Meriaudeau, Fabrice
spellingShingle Awais, Muhammad
Müller, Henning
Tang, Tong B
Meriaudeau, Fabrice
Classification of sd-oct images using a deep learning approach
author_facet Awais, Muhammad
Müller, Henning
Tang, Tong B
Meriaudeau, Fabrice
author_sort Awais, Muhammad
title Classification of sd-oct images using a deep learning approach
title_short Classification of sd-oct images using a deep learning approach
title_full Classification of sd-oct images using a deep learning approach
title_fullStr Classification of sd-oct images using a deep learning approach
title_full_unstemmed Classification of sd-oct images using a deep learning approach
title_sort classification of sd-oct images using a deep learning approach
publishDate 2017
url http://scholars.utp.edu.my/id/eprint/36530/
_version_ 1769845519419441152
score 13.223943