Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels

Cooling electronic component has become indispensable part of electronic devices.A good cooling method provides assurance that the electrical component less likely experience failure.One of the major methods of cooling electronic component is applying nanofluid in channels for heat transfer purpose....

Full description

Saved in:
Bibliographic Details
Main Authors: Haryoko, L.A.F., Sasmito, A.P., Kurnia, J.C.
Format: Article
Published: 2023
Online Access:http://scholars.utp.edu.my/id/eprint/34179/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140803128&doi=10.1007%2f978-981-19-1939-8_22&partnerID=40&md5=a0dc315ed86edf4967ce96c7f1490fcc
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:34179
record_format eprints
spelling oai:scholars.utp.edu.my:341792023-01-04T02:47:24Z http://scholars.utp.edu.my/id/eprint/34179/ Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels Haryoko, L.A.F. Sasmito, A.P. Kurnia, J.C. Cooling electronic component has become indispensable part of electronic devices.A good cooling method provides assurance that the electrical component less likely experience failure.One of the major methods of cooling electronic component is applying nanofluid in channels for heat transfer purpose.Conventional parallel channel design tends to have low pressure drop which indicates less pumping power for the cooling fluid.However, the drawback of the design is that the heat distribution is not sufficiently uniform.The main objective of the research is to make some modifications on the previous parallel channel and propose new parallel designs by using computational fluid dynamics.The flow behaviour and heat transfer performance of a Newtonin nanofluid are investigated under laminar flow condition.Taguchi method is used to determine the best combination of key parameters on this study.The results indicate that the proposed design shows better heat transfer performance compared to the conventional parallel channel.The addition of nanoparticles into the base fluid gives substantial effect on the heat transfer performance of the proposed cooling channel.Optimum operating parameters is obtained with the objective function of minimizing pressure drop and maximizing uniformity of heat distribution. © 2023, Institute of Technology PETRONAS Sdn Bhd. 2023 Article NonPeerReviewed Haryoko, L.A.F. and Sasmito, A.P. and Kurnia, J.C. (2023) Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels. Lecture Notes in Mechanical Engineering. pp. 249-262. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140803128&doi=10.1007%2f978-981-19-1939-8_22&partnerID=40&md5=a0dc315ed86edf4967ce96c7f1490fcc 10.1007/978-981-19-1939-8₂₂ 10.1007/978-981-19-1939-8₂₂
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Cooling electronic component has become indispensable part of electronic devices.A good cooling method provides assurance that the electrical component less likely experience failure.One of the major methods of cooling electronic component is applying nanofluid in channels for heat transfer purpose.Conventional parallel channel design tends to have low pressure drop which indicates less pumping power for the cooling fluid.However, the drawback of the design is that the heat distribution is not sufficiently uniform.The main objective of the research is to make some modifications on the previous parallel channel and propose new parallel designs by using computational fluid dynamics.The flow behaviour and heat transfer performance of a Newtonin nanofluid are investigated under laminar flow condition.Taguchi method is used to determine the best combination of key parameters on this study.The results indicate that the proposed design shows better heat transfer performance compared to the conventional parallel channel.The addition of nanoparticles into the base fluid gives substantial effect on the heat transfer performance of the proposed cooling channel.Optimum operating parameters is obtained with the objective function of minimizing pressure drop and maximizing uniformity of heat distribution. © 2023, Institute of Technology PETRONAS Sdn Bhd.
format Article
author Haryoko, L.A.F.
Sasmito, A.P.
Kurnia, J.C.
spellingShingle Haryoko, L.A.F.
Sasmito, A.P.
Kurnia, J.C.
Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
author_facet Haryoko, L.A.F.
Sasmito, A.P.
Kurnia, J.C.
author_sort Haryoko, L.A.F.
title Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
title_short Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
title_full Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
title_fullStr Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
title_full_unstemmed Numerical Investigation of Laminar Convective Heat Transfer of Nanofluid in Parallel Cooling Channels
title_sort numerical investigation of laminar convective heat transfer of nanofluid in parallel cooling channels
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/34179/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140803128&doi=10.1007%2f978-981-19-1939-8_22&partnerID=40&md5=a0dc315ed86edf4967ce96c7f1490fcc
_version_ 1754532138021027840
score 13.15806