A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study

With the improvement of control system composition and operation process complexity, the uncertainty in its operation process increases and real-time observation data is difficult to obtain, and the influence of noise also exists in the process of signal acquisition, which brings more difficulties t...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, X., Cai, B., Yuan, X., Shao, X., Liu, Y., Akbar Khan, J., Fan, H., Liu, Z., Liu, G.
Format: Article
Published: 2023
Online Access:http://scholars.utp.edu.my/id/eprint/34114/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144039801&doi=10.1016%2fj.eswa.2022.119335&partnerID=40&md5=9364e773ba32ebffc7ba1420440591aa
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:34114
record_format eprints
spelling oai:scholars.utp.edu.my:341142023-01-03T07:34:00Z http://scholars.utp.edu.my/id/eprint/34114/ A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study Liu, X. Cai, B. Yuan, X. Shao, X. Liu, Y. Akbar Khan, J. Fan, H. Liu, Y. Liu, Z. Liu, G. With the improvement of control system composition and operation process complexity, the uncertainty in its operation process increases and real-time observation data is difficult to obtain, and the influence of noise also exists in the process of signal acquisition, which brings more difficulties to the prediction of the remaining useful life (RUL). To solve these problems, a hybrid multi-stage methodology for RUL prediction of control system is proposed. The variant of unscented Kalman filter (UKF) utilizes dynamic Bayesian networks (DBNs) for uncertainty analysis in the process of prediction using UKF, to analyze RUL of nonlinear degenerate systems. In the prophase of prediction, the dynamic unscented Kalman filter models calculate the distribution of random faults and process noise, match the degradation stage of the system and obtain the operation data. Then, optimize the degradation process of the system, and the covariance and the optimal estimate of the system are calculated by cyclic iteration. The real degradation process of control system is simulated by optimizing the results, so as to compensate for the lack of accurate measurement of the real degradation process. The proposed method can improve the accuracy of RUL prediction and enhance the robustness of the prediction model. The methodology is verified by subsea Christmas tree with electro-hydraulic compound control. © 2022 Elsevier Ltd 2023 Article NonPeerReviewed Liu, X. and Cai, B. and Yuan, X. and Shao, X. and Liu, Y. and Akbar Khan, J. and Fan, H. and Liu, Y. and Liu, Z. and Liu, G. (2023) A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study. Expert Systems with Applications, 215. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144039801&doi=10.1016%2fj.eswa.2022.119335&partnerID=40&md5=9364e773ba32ebffc7ba1420440591aa 10.1016/j.eswa.2022.119335 10.1016/j.eswa.2022.119335 10.1016/j.eswa.2022.119335
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description With the improvement of control system composition and operation process complexity, the uncertainty in its operation process increases and real-time observation data is difficult to obtain, and the influence of noise also exists in the process of signal acquisition, which brings more difficulties to the prediction of the remaining useful life (RUL). To solve these problems, a hybrid multi-stage methodology for RUL prediction of control system is proposed. The variant of unscented Kalman filter (UKF) utilizes dynamic Bayesian networks (DBNs) for uncertainty analysis in the process of prediction using UKF, to analyze RUL of nonlinear degenerate systems. In the prophase of prediction, the dynamic unscented Kalman filter models calculate the distribution of random faults and process noise, match the degradation stage of the system and obtain the operation data. Then, optimize the degradation process of the system, and the covariance and the optimal estimate of the system are calculated by cyclic iteration. The real degradation process of control system is simulated by optimizing the results, so as to compensate for the lack of accurate measurement of the real degradation process. The proposed method can improve the accuracy of RUL prediction and enhance the robustness of the prediction model. The methodology is verified by subsea Christmas tree with electro-hydraulic compound control. © 2022 Elsevier Ltd
format Article
author Liu, X.
Cai, B.
Yuan, X.
Shao, X.
Liu, Y.
Akbar Khan, J.
Fan, H.
Liu, Y.
Liu, Z.
Liu, G.
spellingShingle Liu, X.
Cai, B.
Yuan, X.
Shao, X.
Liu, Y.
Akbar Khan, J.
Fan, H.
Liu, Y.
Liu, Z.
Liu, G.
A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
author_facet Liu, X.
Cai, B.
Yuan, X.
Shao, X.
Liu, Y.
Akbar Khan, J.
Fan, H.
Liu, Y.
Liu, Z.
Liu, G.
author_sort Liu, X.
title A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
title_short A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
title_full A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
title_fullStr A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
title_full_unstemmed A hybrid multi-stage methodology for remaining useful life prediction of control system: Subsea Christmas tree as a case study
title_sort hybrid multi-stage methodology for remaining useful life prediction of control system: subsea christmas tree as a case study
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/34114/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144039801&doi=10.1016%2fj.eswa.2022.119335&partnerID=40&md5=9364e773ba32ebffc7ba1420440591aa
_version_ 1754532128988594176
score 13.160551