Physics-Constrained Deep Learning for Isothermal CSTR
This research study investigates the approach of using physics-constrained deep learning in modelling isothermal continuous stirred-tank reactor (CSTR) to address the challenges in its current process control and optimisation. An inaccurate system identification affects prediction and consequently d...
Saved in:
Main Authors: | Kiew, L.L., Abdul Karim, S.A., Izzatullah, M. |
---|---|
格式: | Article |
出版: |
Springer Science and Business Media Deutschland GmbH
2022
|
在线阅读: | http://scholars.utp.edu.my/id/eprint/34085/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140256847&doi=10.1007%2f978-3-031-04028-3_2&partnerID=40&md5=57bc2fe73be90b9d898ffe195e63914a |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Input multiplicity analysis in a non-isothermal CSTR for acid-catalyzed hydrolysis of acetic anhydride
由: Jayakumar, Natesan Subramanian, et al.
出版: (2010) -
Modelling and control for composition of non-isothermal Continuous Stirred Tank Reactor (CSTR) using fuzzy logic
由: Roslan, Raihan Fikri
出版: (2015) -
Bioconversion Of Synthesis Gas To Ethanol In A CSTR.
由: Najafpour, Ghasem, et al.
出版: (2003) -
An Overview on Deep Learning Techniques in Solving Partial Differential Equations
由: Yunus, R.B., et al.
出版: (2022) -
Fuzzy control of continuous stirred tank reactor (CSTR)
由: Mohd Noor, Samsul Bahari, et al.
出版: (2005)