Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts

Nitrous oxide is a highly reactive gas with several well-known environmental impacts. Its presence in the atmosphere can decrease the stratospheric ozone levels, cause an increase in the greenhouse gas emissions, and contribute to acid-rain formation. Therefore, in this article, the potential and pe...

Full description

Saved in:
Bibliographic Details
Main Authors: Rocha-Meneses, L., Inayat, A., Ayoub, M., Ullah, S., Naqvi, S.R., Farrukh, S., Mustafa, A., Abdullah, A.Z., Bhat, A.H.
Format: Article
Published: John Wiley and Sons Inc 2022
Online Access:http://scholars.utp.edu.my/id/eprint/33960/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137977140&doi=10.1002%2fep.13982&partnerID=40&md5=d486dfab1fa92a960da9e62dddf93286
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scholars.utp.edu.my:33960
record_format eprints
spelling oai:scholars.utp.edu.my:339602022-12-20T03:54:20Z http://scholars.utp.edu.my/id/eprint/33960/ Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts Rocha-Meneses, L. Inayat, A. Ayoub, M. Ullah, S. Naqvi, S.R. Farrukh, S. Mustafa, A. Abdullah, A.Z. Bhat, A.H. Nitrous oxide is a highly reactive gas with several well-known environmental impacts. Its presence in the atmosphere can decrease the stratospheric ozone levels, cause an increase in the greenhouse gas emissions, and contribute to acid-rain formation. Therefore, in this article, the potential and performance of different types of cobalt oxide (Co3O4) catalysts in N2O decomposition and conversion was studied. For this, the catalytic activity of these materials was tested in a differential fixed-bed reactor, operated under steady state conditions. The results obtained in this study show reduced CoO achieved 100 N2O conversion at 250°C; that CoO has a great performance (>95) in the absence of oxygen and humidity, regardless of the W/F; even at low space velocities (0.1 g�s/ml) and in the absence of humidity the N2O conversion efficiency is still very high (100); 10La/CoO has a higher catalytic activity than 10 Ba/CoO, 10 Na/CoO, and 10 W/CoO. The highest catalytic activity (>90) was reported in samples with 50La/CoO, even in the presence of 5 H2O and 15 O2. © 2022 American Institute of Chemical Engineers. John Wiley and Sons Inc 2022 Article NonPeerReviewed Rocha-Meneses, L. and Inayat, A. and Ayoub, M. and Ullah, S. and Naqvi, S.R. and Farrukh, S. and Mustafa, A. and Abdullah, A.Z. and Bhat, A.H. (2022) Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts. Environmental Progress and Sustainable Energy. ISSN 19447442 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137977140&doi=10.1002%2fep.13982&partnerID=40&md5=d486dfab1fa92a960da9e62dddf93286 10.1002/ep.13982 10.1002/ep.13982 10.1002/ep.13982
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Nitrous oxide is a highly reactive gas with several well-known environmental impacts. Its presence in the atmosphere can decrease the stratospheric ozone levels, cause an increase in the greenhouse gas emissions, and contribute to acid-rain formation. Therefore, in this article, the potential and performance of different types of cobalt oxide (Co3O4) catalysts in N2O decomposition and conversion was studied. For this, the catalytic activity of these materials was tested in a differential fixed-bed reactor, operated under steady state conditions. The results obtained in this study show reduced CoO achieved 100 N2O conversion at 250°C; that CoO has a great performance (>95) in the absence of oxygen and humidity, regardless of the W/F; even at low space velocities (0.1 g�s/ml) and in the absence of humidity the N2O conversion efficiency is still very high (100); 10La/CoO has a higher catalytic activity than 10 Ba/CoO, 10 Na/CoO, and 10 W/CoO. The highest catalytic activity (>90) was reported in samples with 50La/CoO, even in the presence of 5 H2O and 15 O2. © 2022 American Institute of Chemical Engineers.
format Article
author Rocha-Meneses, L.
Inayat, A.
Ayoub, M.
Ullah, S.
Naqvi, S.R.
Farrukh, S.
Mustafa, A.
Abdullah, A.Z.
Bhat, A.H.
spellingShingle Rocha-Meneses, L.
Inayat, A.
Ayoub, M.
Ullah, S.
Naqvi, S.R.
Farrukh, S.
Mustafa, A.
Abdullah, A.Z.
Bhat, A.H.
Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
author_facet Rocha-Meneses, L.
Inayat, A.
Ayoub, M.
Ullah, S.
Naqvi, S.R.
Farrukh, S.
Mustafa, A.
Abdullah, A.Z.
Bhat, A.H.
author_sort Rocha-Meneses, L.
title Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
title_short Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
title_full Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
title_fullStr Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
title_full_unstemmed Parametric study for N2O conversion and reduction using cobalt-oxide-based catalysts
title_sort parametric study for n2o conversion and reduction using cobalt-oxide-based catalysts
publisher John Wiley and Sons Inc
publishDate 2022
url http://scholars.utp.edu.my/id/eprint/33960/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137977140&doi=10.1002%2fep.13982&partnerID=40&md5=d486dfab1fa92a960da9e62dddf93286
_version_ 1753790760229011456
score 13.18916