Motor Imagery Classification for Brain Computer Interface using Deep Convolutional Neural Networks and Mixup Augmentation
<italic>Goal:</italic> Building a DL model that can be trained on small EEG training set of a single subject presents an interesting challenge that this work is trying to address. In particular, this study is trying to avoid the need for long EEG data collection sessions, and without com...
Saved in:
Main Authors: | Alwasiti, H., Yusoff, M.Z. |
---|---|
格式: | Article |
出版: |
Institute of Electrical and Electronics Engineers Inc.
2022
|
在线阅读: | http://scholars.utp.edu.my/id/eprint/33889/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141601510&doi=10.1109%2fOJEMB.2022.3220150&partnerID=40&md5=7008622fa0e2cf117d6d10a68fe70539 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
MOTOR IMAGERY CLASSIFICATION FOR BCI USING STOCKWELL
TRANSFORM, DEEP METRIC LEARNING, AND DCNN WITH MIXUP
AUGMENTATION
由: ALWASITI, HAIDER
出版: (2021) -
Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning
由: Alwasiti, H., et al.
出版: (2020) -
Classification of four class motor imagery for brain computer interface
由: Abdalsalam, E., et al.
出版: (2017) -
Mental task motor imagery classifications for noninvasive brain computer interface
由: Abdalsalam M., E., et al.
出版: (2014) -
Mental Task Motor Imagery Classifications for Noninvasive Brain Computer Interface
由: Mohamed, Eltaf Abdalsalam, et al.
出版: (2014)