Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor
This study involves the development of novel mesoporous Zr-MCM-48 photocatalyst impregnated with Cu-porphyrin (CuTPP) having Si/Zr ratio of 100, 50 and 25. The synthesized materials were applied as hybrid photocatalyst affording mid-gap energy states and Zi3+ sites for reduction of CO2 into methanol...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Springer
2021
|
Online Access: | http://scholars.utp.edu.my/id/eprint/23837/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111739170&doi=10.1007%2fs10854-021-06676-x&partnerID=40&md5=1cd1609f9bc3faca62a25b83f46f13d3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scholars.utp.edu.my:23837 |
---|---|
record_format |
eprints |
spelling |
oai:scholars.utp.edu.my:238372023-01-04T02:21:27Z http://scholars.utp.edu.my/id/eprint/23837/ Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor Nadeem, S. Mumtaz, A. Alnarabiji, M.S. Mutalib, M.I.A. Abdullah, B. This study involves the development of novel mesoporous Zr-MCM-48 photocatalyst impregnated with Cu-porphyrin (CuTPP) having Si/Zr ratio of 100, 50 and 25. The synthesized materials were applied as hybrid photocatalyst affording mid-gap energy states and Zi3+ sites for reduction of CO2 into methanol selectively using UV�Visible light treatment. Interestingly, Zr-MCM-48 displayed significant photocatalytic reduction ability under UV�Vis wavelength. The bare Zr-based MCM-48(25) matrix with maximum Zr content in catalyst enhanced the photocatalytic activity with 47.5 µmol methanol formation, possessing high surface area SBET of 1324 m2 g�1, under UV�Visible light irradiation. The characterization results highlighted the influence of visible light active Cu-porphyrin interaction over Zr-MCM-48 silica frameworks due to transition of electrons from the porphyrin centres to the active Zr sites as evident from DRS analysis. Moreover, the impregnation of Cu-porphyrin over Zr-MCM-48(25) displayed methanol formation about 365.11 µmol under UV�Visible light using 0.1 M NaOH and 0.1 M Na2SO3. Also, the effect of varying reaction conditions shown that catalyst concentration, metal loading, light intensity and stirring speed pronouncedly impact the formation of methanol. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. Springer 2021 Article NonPeerReviewed Nadeem, S. and Mumtaz, A. and Alnarabiji, M.S. and Mutalib, M.I.A. and Abdullah, B. (2021) Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor. Journal of Materials Science: Materials in Electronics. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111739170&doi=10.1007%2fs10854-021-06676-x&partnerID=40&md5=1cd1609f9bc3faca62a25b83f46f13d3 |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
This study involves the development of novel mesoporous Zr-MCM-48 photocatalyst impregnated with Cu-porphyrin (CuTPP) having Si/Zr ratio of 100, 50 and 25. The synthesized materials were applied as hybrid photocatalyst affording mid-gap energy states and Zi3+ sites for reduction of CO2 into methanol selectively using UV�Visible light treatment. Interestingly, Zr-MCM-48 displayed significant photocatalytic reduction ability under UV�Vis wavelength. The bare Zr-based MCM-48(25) matrix with maximum Zr content in catalyst enhanced the photocatalytic activity with 47.5 µmol methanol formation, possessing high surface area SBET of 1324 m2 g�1, under UV�Visible light irradiation. The characterization results highlighted the influence of visible light active Cu-porphyrin interaction over Zr-MCM-48 silica frameworks due to transition of electrons from the porphyrin centres to the active Zr sites as evident from DRS analysis. Moreover, the impregnation of Cu-porphyrin over Zr-MCM-48(25) displayed methanol formation about 365.11 µmol under UV�Visible light using 0.1 M NaOH and 0.1 M Na2SO3. Also, the effect of varying reaction conditions shown that catalyst concentration, metal loading, light intensity and stirring speed pronouncedly impact the formation of methanol. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
format |
Article |
author |
Nadeem, S. Mumtaz, A. Alnarabiji, M.S. Mutalib, M.I.A. Abdullah, B. |
spellingShingle |
Nadeem, S. Mumtaz, A. Alnarabiji, M.S. Mutalib, M.I.A. Abdullah, B. Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
author_facet |
Nadeem, S. Mumtaz, A. Alnarabiji, M.S. Mutalib, M.I.A. Abdullah, B. |
author_sort |
Nadeem, S. |
title |
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
title_short |
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
title_full |
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
title_fullStr |
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
title_full_unstemmed |
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor |
title_sort |
highly porous zr-mcm-48 immobilized cu-porphyrin for photocatalytic reduction of co2 to methanol in a slurry reactor |
publisher |
Springer |
publishDate |
2021 |
url |
http://scholars.utp.edu.my/id/eprint/23837/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111739170&doi=10.1007%2fs10854-021-06676-x&partnerID=40&md5=1cd1609f9bc3faca62a25b83f46f13d3 |
_version_ |
1754532107302993920 |
score |
13.214268 |